
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6322195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Solution is the Solution: Data-Driven Elucidation of Solution-to-Device Feature Transfer for ï€-Conjugated Polymer Semiconductors. ACS Applied Materials & Interfaces, 2022, 14, 3613-3620.	4.0	16
2	Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance. Joule, 2022, 6, 8-15.	11.7	66
3	Single-Pot Fabrication of Cellulose-Reinforced Solid Polymer Lithium-Ion Conductors. ACS Applied Polymer Materials, 2022, 4, 1948-1955.	2.0	6
4	Anisotropic Responsive Microgels Based on the Cholesteric Phase of Chitin Nanocrystals. ACS Macro Letters, 2022, 11, 96-102.	2.3	2
5	Composition Gradient High-Throughput Polymer Libraries Enabled by Passive Mixing and Elevated Temperature Operability. Chemistry of Materials, 2022, 34, 6659-6670.	3.2	3
6	Integrated dynamic wet spinning of core-sheath hydrogel fibers for optical-to-brain/tissue communications. National Science Review, 2021, 8, nwaa209.	4.6	36
7	Data Science Guided Experiments Identify Conjugated Polymer Solution Concentration as a Key Parameter in Device Performance. , 2021, 3, 1321-1327.		14
8	Active Material Interfacial Chemistry and Its Impact on Composite Magnetite Electrodes. ACS Applied Energy Materials, 2021, 4, 9836-9847.	2.5	4
9	Toward data-enabled process optimization of deformable electronic polymer-based devices. Current Opinion in Chemical Engineering, 2020, 27, 72-80.	3.8	8
10	Highly Oriented and Ordered Water-Soluble Semiconducting Polymers in a DNA Matrix. Chemistry of Materials, 2020, 32, 688-696.	3.2	16
11	Small Data Machine Learning: Classification and Prediction of Poly(ethylene terephthalate) Stabilizers Using Molecular Descriptors. ACS Applied Polymer Materials, 2020, 2, 5592-5601.	2.0	13
12	Advances and opportunities in development of deformable organic electrochemical transistors. Journal of Materials Chemistry C, 2020, 8, 15067-15078.	2.7	25
13	More Than Another Halochromic Polymer: Thiazole-Based Conjugated Polymer Transistors for Acid-Sensing Applications. ACS Applied Polymer Materials, 2020, 2, 5898-5906.	2.0	1
14	Synergistic Effect of <i>N</i> , <i>N</i> -Dimethylformamide and Hydrochloric Acid on the Growth of MAPbl ₃ Perovskite Films for Solar Cells. ACS Omega, 2020, 5, 32295-32304.	1.6	3
15	Ring-Patterned Perovskite Single Crystals Fabricated by the Combination of Rigid and Flexible Templates. ACS Applied Materials & Interfaces, 2020, 12, 27786-27793.	4.0	3
16	Perspective—Enhancing Active Anode Material Performance for Lithium-Ion Batteries via Manipulation of Interfacial Chemistry. Journal of the Electrochemical Society, 2020, 167, 050507.	1.3	8
17	26.7% Efficient 4-Terminal Perovskite–Silicon Tandem Solar Cell Composed of a High-Performance Semitransparent Perovskite Cell and a Doped Poly-Si/SiOx Passivating Contact Silicon Cell. IEEE Journal of Photovoltaics, 2020, 10, 417-422.	1.5	40
18	Functionalization-Directed Stabilization of Hydrogen-Bonded Polymer Complex Fibers: Elasticity and Conductivity. Advanced Fiber Materials, 2019, 1, 71-81.	7.9	26

#	Article	IF	CITATIONS
19	Carboxylated Poly(thiophene) Binders for High-Performance Magnetite Anodes: Impact of Cation Structure. ACS Applied Materials & Interfaces, 2019, 11, 44046-44057.	4.0	11
20	Carboxylic Acid Functionalization Yields Solvent-Resistant Organic Electrochemical Transistors. , 2019, 1, 599-605.		35
21	Festschrift in Honor of Prof. Jean-Luc Brédas on His 65th Birthday. Chemistry of Materials, 2019, 31, 6307-6308.	3.2	2
22	Control of Nucleation Density in Conjugated Polymers via Seed Nucleation. ACS Applied Materials & Interfaces, 2019, 11, 37955-37965.	4.0	11
23	Electrically Conductive Shell-Protective Layer Capping on the Silicon Surface as the Anode Material for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 40034-40042.	4.0	24
24	Tuning Conjugated Polymers for Binder Applications in High-Capacity Magnetite Anodes. ACS Applied Energy Materials, 2019, 2, 7584-7593.	2.5	18
25	Functionalized Cellulose Nanocrystal-Mediated Conjugated Polymer Aggregation. ACS Applied Materials & Interfaces, 2019, 11, 25338-25350.	4.0	21
26	Rational Design of a Narrow-Bandgap Conjugated Polymer Using the Quinoidal Thieno[3,2- <i>b</i>]thiophene-Based Building Block for Organic Field-Effect Transistor Applications. Macromolecules, 2019, 52, 4749-4756.	2.2	41
27	Synergistic Use of Bithiazole and Pyridinyl Substitution for Effective Electron Transport Polymer Materials. Chemistry of Materials, 2019, 31, 3957-3966.	3.2	26
28	Robust and Stretchable Polymer Semiconducting Networks: From Film Microstructure to Macroscopic Device Performance. Chemistry of Materials, 2019, 31, 6530-6539.	3.2	37
29	An Electrifying Choice for the 2019 Chemistry Nobel Prize: Goodenough, Whittingham, and Yoshino. Chemistry of Materials, 2019, 31, 8577-8581.	3.2	31
30	Perovskite solar cells with a hybrid electrode structure. AIP Advances, 2019, 9, 125037.	0.6	16
31	The role of Cr doping in Ni Fe oxide/(oxy)hydroxide electrocatalysts for oxygen evolution. Electrochimica Acta, 2018, 265, 10-18.	2.6	79
32	SWNT Anchored with Carboxylated Polythiophene "Links―on High-Capacity Li-Ion Battery Anode Materials. Journal of the American Chemical Society, 2018, 140, 5666-5669.	6.6	80
33	Vertical Stratification Engineering for Organic Bulk-Heterojunction Devices. ACS Nano, 2018, 12, 4440-4452.	7.3	77
34	Carbon Nanotube Web with Carboxylated Polythiophene "Assist―for High-Performance Battery Electrodes. ACS Nano, 2018, 12, 3126-3139.	7.3	51
35	Molecular-channel driven actuator with considerations for multiple configurations and color switching. Nature Communications, 2018, 9, 590.	5.8	159
36	High capacity Li-ion battery anodes: Impact of crystallite size, surface chemistry and PEG-coating. Electrochimica Acta, 2018, 260, 235-245.	2.6	16

#	Article	IF	CITATIONS
37	Thermoresponsive Liquid Crystals: Thermally Switchable Liquid Crystals Based on Cellulose Nanocrystals with Patchy Polymer Grafts (Small 46/2018). Small, 2018, 14, 1870218.	5.2	2
38	Patterning Bubbles by the Stick–Slip Motion of the Advancing Triple Phase Line on Nanostructures. Langmuir, 2018, 34, 15804-15811.	1.6	5
39	A Polymer Blend Approach for Creation of Effective Conjugated Polymer Charge Transport Pathways. ACS Applied Materials & Interfaces, 2018, 10, 36464-36474.	4.0	14
40	Best Practices for New Polymers and Nanoparticulate Systems. Chemistry of Materials, 2018, 30, 6587-6588.	3.2	4
41	A Thiazole–Naphthalene Diimide Based n-Channel Donor–Acceptor Conjugated Polymer. Macromolecules, 2018, 51, 7320-7328.	2.2	35
42	Thermally Switchable Liquid Crystals Based on Cellulose Nanocrystals with Patchy Polymer Grafts. Small, 2018, 14, e1802060.	5.2	34
43	Solving Materials' Small Data Problem with Dynamic Experimental Databases. Processes, 2018, 6, 79.	1.3	18
44	Upconversion-Assisted Dual-Band Luminescent Solar Concentrator Coupled for High Power Conversion Efficiency Photovoltaic Systems. ACS Photonics, 2018, 5, 3621-3627.	3.2	45
45	Modifying Perovskite Films with Polyvinylpyrrolidone for Ambient-Air-Stable Highly Bendable Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 35385-35394.	4.0	64
46	Process-Structure-Property Relationships for Design of Polymer Organic Electronics Manufacturing. Computer Aided Chemical Engineering, 2018, , 2467-2472.	0.3	1
47	Transparent Quasi-Interdigitated Electrodes for Semitransparent Perovskite Back-Contact Solar Cells. ACS Applied Energy Materials, 2018, 1, 4473-4478.	2.5	27
48	SWNT Networks with Polythiophene Carboxylate Links for High-Performance Silicon Monoxide Electrodes. ACS Applied Energy Materials, 2018, 1, 2417-2423.	2.5	12
49	Nucleation, Growth, and Alignment of Poly(3-hexylthiophene) Nanofibers for High-Performance OFETs. Accounts of Chemical Research, 2017, 50, 932-942.	7.6	121
50	Amplified Photon Upconversion by Photonic Shell of Cholesteric Liquid Crystals. Journal of the American Chemical Society, 2017, 139, 5708-5711.	6.6	47
51	Polypeptide-Assisted Organization of π-Conjugated Polymers into Responsive, Soft 3D Networks. Chemistry of Materials, 2017, 29, 5058-5062.	3.2	4
52	Solvent vapor annealing of oriented PbI2 films for improved crystallization of perovskite films in the air. Solar Energy Materials and Solar Cells, 2017, 166, 167-175.	3.0	22
53	Enhanced Alignment of Water-Soluble Polythiophene Using Cellulose Nanocrystals as a Liquid Crystal Template. Biomacromolecules, 2017, 18, 1556-1562.	2.6	19
54	Ultrathin Double‧hell Capsules for High Performance Photon Upconversion. Advanced Materials, 2017, 29, 1606830.	11.1	22

ELSA REICHMANIS

#	Article	lF	CITATIONS
55	Wetting of Inkjet Polymer Droplets on Porous Alumina Substrates. Langmuir, 2017, 33, 130-137.	1.6	18
56	High-Throughput Image Analysis of Fibrillar Materials: A Case Study on Polymer Nanofiber Packing, Alignment, and Defects in Organic Field Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 36090-36102.	4.0	31
57	Life Cycle Inventory Assessment as a Sustainable Chemistry and Engineering Education Tool. ACS Sustainable Chemistry and Engineering, 2017, 5, 9603-9613.	3.2	12
58	High Performance Graphitic Carbon from Waste Polyethylene: Thermal Oxidation as a Stabilization Pathway Revisited. Chemistry of Materials, 2017, 29, 9518-9527.	3.2	61
59	Versatile Interpenetrating Polymer Network Approach to Robust Stretchable Electronic Devices. Chemistry of Materials, 2017, 29, 7645-7652.	3.2	101
60	Polypeptide Composite Particle-Assisted Organization of π-Conjugated Polymers into Highly Crystalline "Coffee Stains― ACS Applied Materials & Interfaces, 2017, 9, 34337-34348.	4.0	10
61	Aqueous Processing for Printed Organic Electronics: Conjugated Polymers with Multistage Cleavable Side Chains. ACS Central Science, 2017, 3, 961-967.	5.3	43
62	Automated Analysis of Orientational Order in Images of Fibrillar Materials. Chemistry of Materials, 2017, 29, 3-14.	3.2	57
63	Control of Molecular Ordering, Alignment, and Charge Transport in Solution-Processed Conjugated Polymer Thin Films. Polymers, 2017, 9, 212.	2.0	66
64	Combining post-specimen aberration correction and direct electron detection to image molecular structure in liquid crystal polymers. Microscopy and Microanalysis, 2016, 22, 1924-1925.	0.2	5
65	Flexible Ofets: Synergistic Effect of Regioregular and Regiorandom Poly(3â€hexylthiophene) Blends for High Performance Flexible Organic Field Effect Transistors (Adv. Electron. Mater. 2/2016). Advanced Electronic Materials, 2016, 2, .	2.6	1
66	Domed Silica Microcylinders Coated with Oleophilic Polypeptides and Their Behavior in Lyotropic Cholesteric Liquid Crystals of the Same Polypeptide. Langmuir, 2016, 32, 13137-13148.	1.6	11
67	Ordering of Poly(3-hexylthiophene) in Solutions and Films: Effects of Fiber Length and Grain Boundaries on Anisotropy and Mobility. Chemistry of Materials, 2016, 28, 3905-3913.	3.2	103
68	Silicon Valley meets the ivory tower: Searchable data repositories for experimental nanomaterials research. Current Opinion in Solid State and Materials Science, 2016, 20, 338-343.	5.6	14
69	Conjugated Polymer Alignment: Synergisms Derived from Microfluidic Shear Design and UV Irradiation. ACS Applied Materials & Interfaces, 2016, 8, 24761-24772.	4.0	26
70	Electron/Ion Transport Enhancer in High Capacity Li-Ion Battery Anodes. Chemistry of Materials, 2016, 28, 6689-6697.	3.2	60
71	Unipolar Electron Transport Polymers: A Thiazole Based All-Electron Acceptor Approach. Chemistry of Materials, 2016, 28, 6045-6049.	3.2	85
72	Toward Precision Control of Nanofiber Orientation in Conjugated Polymer Thin Films: Impact on Charge Transport. Chemistry of Materials, 2016, 28, 9099-9109.	3.2	75

#	Article	IF	CITATIONS
73	From Staple Food to Flexible Substrate to Electronics: Rice as a Biocompatible Precursor for Flexible Electronic Components. Chemistry of Materials, 2016, 28, 8475-8479.	3.2	5
74	Three-Dimensional Clustered Nanostructures for Microfluidic Surface-Enhanced Raman Detection. ACS Applied Materials & Interfaces, 2016, 8, 24974-24981.	4.0	18
75	Synergistic Effect of Regioregular and Regiorandom Poly(3â€hexylthiophene) Blends for High Performance Flexible Organic Field Effect Transistors. Advanced Electronic Materials, 2016, 2, 1500384.	2.6	54
76	Elastomer–Polymer Semiconductor Blends for High-Performance Stretchable Charge Transport Networks. Chemistry of Materials, 2016, 28, 1196-1204.	3.2	129
77	Protein-Assisted Assembly of ï€-Conjugated Polymers. Chemistry of Materials, 2016, 28, 573-582.	3.2	20
78	Toward Uniformly Dispersed Battery Electrode Composite Materials: Characteristics and Performance. ACS Applied Materials & amp; Interfaces, 2016, 8, 3452-3463.	4.0	47
79	Drain Current in Poly(3â€hexylthiophene) Solutions during Film Formation: Correlations to Structural Changes. ChemNanoMat, 2015, 1, 32-38.	1.5	1
80	Photoinduced Anisotropic Assembly of Conjugated Polymers in Insulating Polymer Blends. ACS Applied Materials & Interfaces, 2015, 7, 14095-14103.	4.0	49
81	Best Practices for Reporting Organic Field Effect Transistor Device Performance. Chemistry of Materials, 2015, 27, 4167-4168.	3.2	39
82	Microfluidic Crystal Engineering of π-Conjugated Polymers. ACS Nano, 2015, 9, 8220-8230.	7.3	102
83	Enhanced Mobility and Effective Control of Threshold Voltage in P3HT-Based Field-Effect Transistors via Inclusion of Oligothiophenes. ACS Applied Materials & Interfaces, 2015, 7, 6652-6660.	4.0	23
84	Liquid Crystalline Poly(3-hexylthiophene) Solutions Revisited: Role of Time-Dependent Self-Assembly. Chemistry of Materials, 2015, 27, 2687-2694.	3.2	64
85	Molecular Engineering of Nonhalogenated Solution-Processable Bithiazole-Based Electron-Transport Polymeric Semiconductors. Chemistry of Materials, 2015, 27, 2928-2937.	3.2	79
86	Flow Effects on the Controlled Growth of Nanostructured Networks at Microcapillary Walls for Applications in Continuous Flow Reactions. ACS Applied Materials & Interfaces, 2015, 7, 21580-21588.	4.0	12
87	Controlled Assembly of Poly(3â€hexylthiophene): Managing the Disorder to Order Transition on the Nano―through Meso cales. Advanced Functional Materials, 2015, 25, 920-927.	7.8	72
88	Photoinduced Anisotropic Supramolecular Assembly and Enhanced Charge Transport of Poly(3â€hexylthiophene) Thin Films. Advanced Functional Materials, 2014, 24, 4457-4465.	7.8	102
89	Competition between Charge Transport and Energy Barrier in Injection-Limited Metal/Quantum Dot Nanocrystal Contacts. Chemistry of Materials, 2014, 26, 6393-6400.	3.2	14
90	Anisotropic Assembly of Conjugated Polymer Nanocrystallites for Enhanced Charge Transport. ACS Applied Materials & Interfaces, 2014, 6, 21541-21549.	4.0	42

#	Article	IF	CITATIONS
91	Photopolymer Materials and Processes for Advanced Technologies. Chemistry of Materials, 2014, 26, 533-548.	3.2	306
92	Enhancing Fieldâ€Effect Mobility of Conjugated Polymers Through Rational Design of Branched Side Chains. Advanced Functional Materials, 2014, 24, 3734-3744.	7.8	112
93	Additive-Free Hollow-Structured Co ₃ O ₄ Nanoparticle Li-Ion Battery: The Origins of Irreversible Capacity Loss. ACS Nano, 2014, 8, 6701-6712.	7.3	94
94	Ultrasound-Induced Ordering in Poly(3-hexylthiophene): Role of Molecular and Process Parameters on Morphology and Charge Transport. ACS Applied Materials & amp; Interfaces, 2013, 5, 2368-2377.	4.0	65
95	Solvent Based Hydrogen Bonding: Impact on Poly(3-hexylthiophene) Nanoscale Morphology and Charge Transport Characteristics. ACS Nano, 2013, 7, 5402-5413.	7.3	88
96	Simultaneous Study of Exciton Diffusion/Dissociation and Charge Transport in a Donorâ€Acceptor Bilayer: Pentacene on a C ₆₀ â€ŧerminated Selfâ€Assembled Monolayer. Advanced Materials, 2013, 25, 6453-6458.	11.1	12
97	Exciton dissociation and charge trapping at poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester bulk heterojunction interfaces: Photo-induced threshold voltage shifts in organic field-effect transistors and solar cells. Journal of Applied Physics, 2012, 111, 084908.	1.1	11
98	Imparting Chemical Stability in Nanoparticulate Silver via a Conjugated Polymer Casing Approach. ACS Applied Materials & Interfaces, 2012, 4, 4357-4365.	4.0	53
99	Lowâ€Threshold Photon Upconversion Capsules Obtained by Photoinduced Interfacial Polymerization. Angewandte Chemie - International Edition, 2012, 51, 11841-11844.	7.2	68
100	Exciton Dissociation and Charge Transport Properties at a Modified Donor/Acceptor Interface: Poly(3-hexylthiophene)/Thiol-ZnO Bulk Heterojunction Interfaces. Journal of Physical Chemistry C, 2012, 116, 4252-4258.	1.5	9
101	An approach to core–shell nanostructured materials with high colloidal and chemical stability: synthesis, characterization and mechanistic evaluation. Colloid and Polymer Science, 2012, 290, 1913-1926.	1.0	10
102	High Charge Carrier Mobility, Low Band Gap Donor–Acceptor Benzothiadiazole-oligothiophene Based Polymeric Semiconductors. Chemistry of Materials, 2012, 24, 4123-4133.	3.2	76
103	Regioregularity and Intrachain Ordering: Impact on the Nanostructure and Charge Transport in Two-Dimensional Assemblies of Poly(3-hexylthiophene). Chemistry of Materials, 2012, 24, 2845-2853.	3.2	44
104	Synthesis and characterization of graft polymethacrylates containing conducting diphenyldithiophene for organic thinâ€film transistors. Journal of Polymer Science Part A, 2012, 50, 199-206.	2.5	10
105	Memory and Photovoltaic Elements in Organic Field Effect Transistors with Donor/Acceptor Planar-Hetero Junction Interfaces. Journal of Physical Chemistry C, 2012, 116, 9390-9397.	1.5	27
106	Conducting Channel Formation in Poly(3-hexylthiophene) Field Effect Transistors: Bulk to Interface. Journal of Physical Chemistry C, 2011, 115, 11719-11726.	1.5	17
107	Solvent Evaporation Induced Liquid Crystalline Phase in Poly(3-hexylthiophene). Journal of the American Chemical Society, 2011, 133, 7244-7247.	6.6	66
108	Preface to the <i>Chemistry of Materials</i> Special Issue on π-Functional Materials. Chemistry of Materials, 2011, 23, 309-309.	3.2	51

#	Article	IF	CITATIONS
109	Electrical Contact Properties between the Accumulation Layer and Metal Electrodes in Ultrathin Poly(3-hexylthiophene)(P3HT) Field Effect Transistors. ACS Applied Materials & Interfaces, 2011, 3, 1574-1580.	4.0	31
110	Synthesis of electroactive polystyrene derivatives paraâ€substituted with Ï€â€conjugated oligothiophene via postgrafting functionalization. Journal of Polymer Science Part A, 2011, 49, 1155-1162.	2.5	16
111	Tunable Crystallinity in Regioregular Poly(3â€Hexylthiophene) Thin Films and Its Impact on Field Effect Mobility. Advanced Functional Materials, 2011, 21, 2652-2659.	7.8	115
112	The Evolution Study Of Thin Film Structure During The Film Formation. , 2010, , .		0
113	Investigation of Solubilityâ^'Field Effect Mobility Orthogonality in Substituted Phenyleneâ^'Thiophene Co-oligomers. Chemistry of Materials, 2007, 19, 4676-4681.	3.2	27
114	Plastic electronic devices: From materials design to device applications. Bell Labs Technical Journal, 2005, 10, 87-105.	0.7	62
115	Polymers, Photoresponsive (in Electronic Applications). , 2003, , 723-744.		2
116	APPLIED PHYSICS: Testing the Limits for Resists. Science, 2002, 297, 349-350.	6.0	4
117	Nanoporous Ultralow Dielectric Constant Organosilicates Templated by Triblock Copolymers. Chemistry of Materials, 2002, 14, 369-374.	3.2	130
118	Molecular Templating of Nanoporous Ultralow Dielectric Constant (â‰^1.5) Organosilicates by Tailoring the Microphase Separation of Triblock Copolymers. Chemistry of Materials, 2001, 13, 2762-2764.	3.2	98
119	Radiation chemistry of polymeric materials: novel chemistry and applications for microlithography. Polymer International, 1999, 48, 1053-1059.	1.6	39
120	Organic Materials Challenges for 193 nm Imaging. Accounts of Chemical Research, 1999, 32, 659-667.	7.6	72
121	Influence of Polymer Structure on the Miscibility of Photoacid Generators. Chemistry of Materials, 1994, 6, 295-301.	3.2	23
122	Synthesis and evaluation of copolymers of (tert-butoxycarbonyloxy)styrene and (2-nitrobenzyl)styrene sulfonates: single-component chemically amplified deep-UV imaging materials. Chemistry of Materials, 1992, 4, 837-842.	3.2	34
123	Synthesis and characterization of poly[4-((tert-butoxycarbonyl)oxy)styrene-sulfone]. Chemistry of Materials, 1991, 3, 660-667.	3.2	10
124	Chemical amplification mechanisms for microlithography. Chemistry of Materials, 1991, 3, 394-407.	3.2	217
125	Design, synthesis, characterization, and use of all-organic, nonionic photogenerators of acid. Chemistry of Materials, 1991, 3, 462-471.	3.2	35
126	<title>Preliminary lithographic characteristics of an all-organic chemically amplified resist</td><td></td><td>21</td></tr></tbody></table></title>		

formulation for single-layer deep-UV lithography</title>., 1991,,.

#	Article	IF	CITATIONS
127	An overview of resist processing for deep-UV lithography Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 1991, 4, 299-318.	0.1	33
128	Polymer materials for microlithography. Chemical Reviews, 1989, 89, 1273-1289.	23.0	146