Asrar B Malik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6322154/publications.pdf

Version: 2024-02-01

334 31,561 94 164
papers citations h-index g-index

342 342 34128
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxidants and Redox Signaling, 2014, 20, 1126-1167.	2.5	3,036
2	Signaling Mechanisms Regulating Endothelial Permeability. Physiological Reviews, 2006, 86, 279-367.	13.1	1,496
3	NF-κB activation as a pathological mechanism of septic shock and inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L622-L645.	1.3	667
4	Regulation of Endothelial Permeability via Paracellular and Transcellular Transport Pathways. Annual Review of Physiology, 2010, 72, 463-493.	5.6	553
5	<i>Regulation of Endothelial Junctional Permeability</i> . Annals of the New York Academy of Sciences, 2008, 1123, 134-145.	1.8	501
6	Inhibition of the Glycolytic Activator PFKFB3 in Endothelium Induces Tumor Vessel Normalization, Impairs Metastasis, and Improves Chemotherapy. Cancer Cell, 2016, 30, 968-985.	7.7	464
7	NADPH Oxidase-Dependent Signaling in Endothelial Cells: Role in Physiology and Pathophysiology. Antioxidants and Redox Signaling, 2009, 11, 791-810.	2.5	355
8	Impairment of Store-Operated Ca 2+ Entry in TRPC4 â ⁻ '/â ⁻ ' Mice Interferes With Increase in Lung Microvascular Permeability. Circulation Research, 2002, 91, 70-76.	2.0	352
9	Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability. Circulation Research, 2017, 120, 179-206.	2.0	345
10	Inhibition of NF-κB Activation by Pyrrolidine Dithiocarbamate Prevents In Vivo Expression of Proinflammatory Genes. Circulation, 1999, 100, 1330-1337.	1.6	326
11	Gp60 Activation Mediates Albumin Transcytosis in Endothelial Cells by Tyrosine Kinase-dependent Pathway. Journal of Biological Chemistry, 1997, 272, 25968-25975.	1.6	321
12	Lipopolysaccharide Stimulates Platelet Secretion and Potentiates Platelet Aggregation via TLR4/MyD88 and the cGMP-Dependent Protein Kinase Pathway. Journal of Immunology, 2009, 182, 7997-8004.	0.4	311
13	Thrombin-induced increase in albumin permeability across the endothelium. Journal of Cellular Physiology, 1986, 128, 96-104.	2.0	300
14	Caspase-11–mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. Journal of Clinical Investigation, 2017, 127, 4124-4135.	3.9	298
15	Size and Dynamics of Caveolae Studied Using Nanoparticles in Living Endothelial Cells. ACS Nano, 2009, 3, 4110-4116.	7.3	275
16	Endothelial Cell-Surface Gp60 Activates Vesicle Formation and Trafficking via Gi-Coupled Src Kinase Signaling Pathway. Journal of Cell Biology, 2000, 150, 1057-1070.	2.3	270
17	Caveolin regulation of endothelial function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L1179-L1183.	1.3	262
18	Role of Ca2+ signaling in the regulation of endothelial permeability. Vascular Pharmacology, 2002, 39, 173-185.	1.0	257

#	Article	IF	Citations
19	Persistent eNOS activation secondary to caveolin-1 deficiency induces pulmonary hypertension in mice and humans through PKG nitration. Journal of Clinical Investigation, 2009, 119, 2009-2018.	3.9	256
20	H2O2 and Tumor Necrosis Factor-α Activate Intercellular Adhesion Molecule 1 (ICAM-1) Gene Transcription through Distinct cis-Regulatory Elements within the ICAM-1 Promoter. Journal of Biological Chemistry, 1995, 270, 18966-18974.	1.6	250
21	The TWIK2 Potassium Efflux Channel in Macrophages Mediates NLRP3 Inflammasome-Induced Inflammation. Immunity, 2018, 49, 56-65.e4.	6.6	247
22	TLR4 signaling induces TLR2 expression in endothelial cells via neutrophil NADPH oxidase. Journal of Clinical Investigation, 2003, 112, 1234-1243.	3.9	234
23	Molecular sieving characteristics of the cultured endothelial monolayer. Journal of Cellular Physiology, 1987, 132, 111-117.	2.0	233
24	Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nature Nanotechnology, 2014, 9, 204-210.	15.6	232
25	Toll-like receptor-4 (TLR4) signaling augments chemokine-induced neutrophil migration by modulating cell surface expression of chemokine receptors. Nature Medicine, 2003, 9, 315-321.	15.2	231
26	Protein Kinase C-α Signals Rho-Guanine Nucleotide Dissociation Inhibitor Phosphorylation and Rho Activation and Regulates the Endothelial Cell Barrier Function. Journal of Biological Chemistry, 2001, 276, 22614-22620.	1.6	230
27	Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L187-L196.	1.3	228
28	Role of TRPM2 Channel in Mediating H ₂ O ₂ -Induced Ca ²⁺ Entry and Endothelial Hyperpermeability. Circulation Research, 2008, 102, 347-355.	2.0	218
29	PKCζ Regulates TNF-α–Induced Activation of NADPH Oxidase in Endothelial Cells. Circulation Research, 2002, 90, 1012-1019.	2.0	217
30	mtDNA Activates cGAS Signaling and Suppresses the YAP-Mediated Endothelial Cell Proliferation Program to Promote Inflammatory Injury. Immunity, 2020, 52, 475-486.e5.	6.6	217
31	Transcriptional mechanisms of acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L1037-L1050.	1.3	216
32	Ca2+Signaling, TRP Channels, and Endothelial Permeability. Microcirculation, 2006, 13, 693-708.	1.0	216
33	Protein transport across the lung epithelial barrier. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L247-L259.	1.3	214
34	Activation of NLRP3 Inflammasome in Alveolar Macrophages Contributes to Mechanical Stretch-Induced Lung Inflammation and Injury. Journal of Immunology, 2013, 190, 3590-3599.	0.4	211
35	Endothelial heterogeneity across distinct vascular beds during homeostasis and inflammation. ELife, 2020, 9, .	2.8	209
36	Mechanisms regulating endothelial cell barrier function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L419-L422.	1.3	206

#	Article	IF	Citations
37	Thrombin-induced chemotaxis and aggregation of neutrophils. Journal of Cellular Physiology, 1986, 128, 485-490.	2.0	203
38	Caveolin-1 Regulates NF-κB Activation and Lung Inflammatory Response to Sepsis Induced by Lipopolysaccharide. Journal of Immunology, 2006, 177, 4853-4860.	0.4	199
39	Ca 2+ signalling and PKCα activate increased endothelial permeability by disassembly of VEâ€"cadherin junctions. Journal of Physiology, 2001, 533, 433-445.	1.3	198
40	RhoA Interaction with Inositol 1,4,5-Trisphosphate Receptor and Transient Receptor Potential Channel-1 Regulates Ca2+ Entry. Journal of Biological Chemistry, 2003, 278, 33492-33500.	1.6	198
41	The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nature Immunology, 2012, 13, 29-34.	7.0	195
42	Protein Kinase C-δ (PKC-δ) Is Activated by Type I Interferons and Mediates Phosphorylation of Stat1 on Serine 727. Journal of Biological Chemistry, 2002, 277, 14408-14416.	1.6	193
43	TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation. Journal of Experimental Medicine, 2012, 209, 1953-1968.	4.2	191
44	Role of Src-induced Dynamin-2 Phosphorylation in Caveolae-mediated Endocytosis in Endothelial Cells. Journal of Biological Chemistry, 2004, 279, 20392-20400.	1.6	190
45	Gαq-TRPC6-mediated Ca2+ Entry Induces RhoA Activation and Resultant Endothelial Cell Shape Change in Response to Thrombin. Journal of Biological Chemistry, 2007, 282, 7833-7843.	1.6	189
46	Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochemistry and Cell Biology, 2002, 117, 105-112.	0.8	181
47	Bidirectional regulation of neutrophil migration by mitogen-activated protein kinases. Nature Immunology, 2012, 13, 457-464.	7.0	181
48	Termination of endothelin signaling: Role of nitric oxide. Journal of Cellular Physiology, 1994, 158, 485-494.	2.0	179
49	Role of NADPH Oxidase in the Mechanism of Lung Neutrophil Sequestration and Microvessel Injury Induced by Gram-Negative Sepsis: Studies in p47 <i>phox</i> a^'/â^' and gp91 <i>phox</i> â^'/â^' Mice. Journal of Immunology, 2002, 168, 3974-3982.	0.4	177
50	Activation of Sphingosine Kinase-1 Reverses the Increase in Lung Vascular Permeability Through Sphingosine-1-Phosphate Receptor Signaling in Endothelial Cells. Circulation Research, 2008, 103, 1164-1172.	2.0	174
51	Dual Regulation of Endothelial Junctional Permeability. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, re8.	4.1	166
52	Protein Kinase Cα Phosphorylates the TRPC1 Channel and Regulates Store-operated Ca2+ Entry in Endothelial Cells. Journal of Biological Chemistry, 2004, 279, 20941-20949.	1.6	160
53	Angiopoietin-1 Opposes VEGF-Induced Increase in Endothelial Permeability by Inhibiting TRPC1-Dependent Ca 2 Influx. Circulation Research, 2005, 96, 1282-1290.	2.0	159
54	Endothelial β-Catenin Signaling Is Required for Maintaining Adult Blood–Brain Barrier Integrity and Central Nervous System Homeostasis. Circulation, 2016, 133, 177-186.	1.6	158

#	Article	IF	Citations
55	Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5662-5667.	3.3	157
56	Molecular determinants of endothelial transcytosis and their role in endothelial permeability. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L823-L842.	1.3	157
57	Requisite Role of the Cholinergic α7 Nicotinic Acetylcholine Receptor Pathway in Suppressing Gram-Negative Sepsis-Induced Acute Lung Inflammatory Injury. Journal of Immunology, 2010, 184, 401-410.	0.4	156
58	Protein Kinase C-δRegulates Thrombin-Induced ICAM-1 Gene Expression in Endothelial Cells via Activation of p38 Mitogen-Activated Protein Kinase. Molecular and Cellular Biology, 2001, 21, 5554-5565.	1.1	155
59	Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12980-12985.	3.3	154
60	YAP Controls Endothelial Activation and Vascular Inflammation Through TRAF6. Circulation Research, 2018, 123, 43-56.	2.0	153
61	Endothelial cell–restricted disruption of FoxM1 impairs endothelial repair following LPS-induced vascular injury. Journal of Clinical Investigation, 2006, 116, 2333-2343.	3.9	152
62	Suppression of RhoA Activity by Focal Adhesion Kinase-induced Activation of p190RhoGAP. Journal of Biological Chemistry, 2006, 281, 2296-2305.	1.6	150
63	Albumin uptake and transcytosis in endothelial cells in vivo induced by albumin-binding protein. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L1512-L1522.	1.3	145
64	Albumin mediates the transcytosis of myeloperoxidase by means of caveolae in endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7699-7704.	3.3	145
65	Protein Kinase Cα-Induced p115RhoGEF Phosphorylation Signals Endothelial Cytoskeletal Rearrangement. Journal of Biological Chemistry, 2003, 278, 28793-28798.	1.6	141
66	Endothelial progenitor cells and vascular repair. Current Opinion in Hematology, 2014, 21, 224-228.	1.2	140
67	TNFα-stimulated gene-6 (TSG6) activates macrophage phenotype transition to prevent inflammatory lung injury. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8151-E8158.	3.3	139
68	GÎ \pm qand GÎ 2 Î 3 Regulate PAR-1 Signaling of Thrombin-Induced NF-Î $^\circ$ B Activation and ICAM-1 Transcription in Endothelial Cells. Circulation Research, 2002, 91, 398-405.	2.0	138
69	Sphingosine 1-Phosphate-induced Mobilization of Intracellular Ca2+ Mediates Rac Activation and Adherens Junction Assembly in Endothelial Cells. Journal of Biological Chemistry, 2005, 280, 17320-17328.	1.6	137
70	Abrogation of thrombin-induced increase in pulmonary microvascular permeability in PAR-1 knockout mice. Physiological Genomics, 2000, 4, 137-145.	1.0	133
71	Tumor necrosis factor-α-induced TRPC1 expression amplifies store-operated Ca2+ influx and endothelial permeability. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L1303-L1313.	1.3	133
72	Two Waves of Platelet Secretion Induced by Thromboxane A2 Receptor and a Critical Role for Phosphoinositide 3-Kinases. Journal of Biological Chemistry, 2003, 278, 30725-30731.	1.6	130

#	Article	IF	CITATIONS
73	RhoA/Rho-Associated Kinase Pathway Selectively Regulates Thrombin-Induced Intercellular Adhesion Molecule-1 Expression in Endothelial Cells via Activation of llºB Kinase l² and Phosphorylation of RelA/p65. Journal of Immunology, 2004, 173, 6965-6972.	0.4	130
74	Constitutive eNOS-derived nitric oxide is a determinant of endothelial junctional integrity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L371-L381.	1.3	129
75	siRNA-induced caveolin-1 knockdown in mice increases lung vascular permeability via the junctional pathway. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L405-L413.	1.3	129
76	Cdc42 Regulates the Restoration of Endothelial Barrier Function. Circulation Research, 2004, 94, 159-166.	2.0	124
77	Tumor Necrosis Factor-α Induces Early-Onset Endothelial Adhesivity by Protein Kinase Cζ–Dependent Activation of Intercellular Adhesion Molecule-1. Circulation Research, 2003, 92, 1089-1097.	2.0	123
78	Transcriptional Regulation of Endothelial Cell and Vascular Development. Circulation Research, 2013, 112, 1380-1400.	2.0	123
79	Novel Mechanism of Endothelial Nitric Oxide Synthase Activation Mediated by Caveolae Internalization in Endothelial Cells. Circulation Research, 2006, 99, 870-877.	2.0	122
80	Phosphatidylinositol 3-Kinase Î ³ Signaling through Protein Kinase Cζ Induces NADPH Oxidase-mediated Oxidant Generation and NF-Î ⁹ B Activation in Endothelial Cells. Journal of Biological Chemistry, 2006, 281, 16128-16138.	1.6	121
81	Thrombin Induces Proteinase-activated Receptor-1 Gene Expression in Endothelial Cells via Activation of Gi-linked Ras/Mitogen-activated Protein Kinase Pathway. Journal of Biological Chemistry, 1999, 274, 13718-13727.	1.6	117
82	Role of Neutrophil NADPH Oxidase in the Mechanism of Tumor Necrosis Factor- \hat{l} ±-induced NF- \hat{l} B Activation and Intercellular Adhesion Molecule-1 Expression in Endothelial Cells. Journal of Biological Chemistry, 2002, 277, 3404-3411.	1.6	117
83	IL- $1\hat{l}^2$ suppression of VE-cadherin transcription underlies sepsis-induced inflammatory lung injury. Journal of Clinical Investigation, 2020, 130, 3684-3698.	3.9	116
84	Activation of NF- \hat{l}^2B induced by H ₂ O ₂ and TNF- \hat{l}^2B and its effects on ICAM-1 expression in endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L302-L311.	1.3	112
85	Intercellular Adhesion Molecule-1–Dependent Neutrophil Adhesion to Endothelial Cells Induces Caveolae-Mediated Pulmonary Vascular Hyperpermeability. Circulation Research, 2008, 102, e120-31.	2.0	112
86	The Ca ²⁺ Sensor Stromal Interaction Molecule 1 (STIM1) Is Necessary and Sufficient for the Store-Operated Ca ²⁺ Entry Function of Transient Receptor Potential Canonical (TRPC) 1 and 4 Channels in Endothelial Cells. Molecular Pharmacology, 2012, 81, 510-526.	1.0	112
87	Protein kinase C-ζ mediates TNF-α-induced ICAM-1 gene transcription in endothelial cells. American Journal of Physiology - Cell Physiology, 2000, 279, C906-C914.	2.1	108
88	Caveolin-1 scaffold domain interacts with TRPC1 and IP ₃ R3 to regulate Ca ²⁺ store release-induced Ca ²⁺ entry in endothelial cells. American Journal of Physiology - Cell Physiology, 2009, 296, C403-C413.	2.1	108
89	Nitric oxide–dependent Src activation and resultant caveolin-1 phosphorylation promote eNOS/caveolin-1 binding and eNOS inhibition. Molecular Biology of the Cell, 2012, 23, 1388-1398.	0.9	107
90	$HIF2\hat{l}\pm$ signaling inhibits adherens junctional disruption in acute lung injury. Journal of Clinical Investigation, 2015, 125, 652-664.	3.9	105

#	Article	IF	Citations
91	Sox17 is required for endothelial regeneration following inflammation-induced vascular injury. Nature Communications, 2019, 10, 2126.	5.8	104
92	Delivery of nanoparticleâ€complexed drugs across the vascular endothelial barrier via caveolae. IUBMB Life, 2011, 63, 659-667.	1.5	103
93	Evidence for the role of alveolar epithelial gp60 in active transalveolar albumin transport in the rat lung. Journal of Physiology, 2001, 533, 547-559.	1.3	102
94	Integrated control of lung fluid balance. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L1081-L1090.	1.3	101
95	Krüppel-Like Factor-4 Transcriptionally Regulates VE-Cadherin Expression and Endothelial Barrier Function. Circulation Research, 2010, 107, 959-966.	2.0	100
96	Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae. Molecular Biology of the Cell, 2016, 27, 2090-2106.	0.9	98
97	E-selectin expression in human endothelial cells by TNF-α-induced oxidant generation and NF-κB activation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L533-L544.	1.3	97
98	Nonmuscle myosin light-chain kinase mediates neutrophil transmigration in sepsis-induced lung inflammation by activating \hat{l}^22 integrins. Nature Immunology, 2008, 9, 880-886.	7.0	97
99	Piezo1 mediates angiogenesis through activation of MT1-MMP signaling. American Journal of Physiology - Cell Physiology, 2019, 316, C92-C103.	2.1	97
100	Intersectin Regulates Fission and Internalization of Caveolae in Endothelial Cells. Molecular Biology of the Cell, 2003, 14, 4997-5010.	0.9	95
101	Role of NF-κB-dependent Caveolin-1 Expression in the Mechanism of Increased Endothelial Permeability Induced by Lipopolysaccharide. Journal of Biological Chemistry, 2008, 283, 4210-4218.	1.6	95
102	Caveolin-1 Regulates Store-Operated Ca2+ Influx by Binding of Its Scaffolding Domain to Transient Receptor Potential Channel-1 in Endothelial Cells. Molecular Pharmacology, 2006, 70, 1174-1183.	1.0	93
103	NOS1-derived nitric oxide promotes NF-κB transcriptional activity through inhibition of suppressor of cytokine signaling-1. Journal of Experimental Medicine, 2015, 212, 1725-1738.	4.2	93
104	LPS activation of Toll-like receptor 4 signals CD11b/CD18 expression in neutrophils. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L655-L662.	1.3	92
105	Increased pulmonary vascular resistance and defective pulmonary artery filling in caveolin-1 ^{â^'/â^'} mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L865-L873.	1.3	92
106	Toll-like receptor 4 mediates neutrophil sequestration and lung injury induced by endotoxin and hyperinflation*. Critical Care Medicine, 2010, 38, 194-201.	0.4	92
107	Caveolin-1 Tyr14 Phosphorylation Induces Interaction with TLR4 in Endothelial Cells and Mediates MyD88-Dependent Signaling and Sepsis-Induced Lung Inflammation. Journal of Immunology, 2013, 191, 6191-6199.	0.4	92
108	Functional and morphological studies of protein transcytosis in continuous endothelia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L895-L901.	1.3	91

#	Article	IF	CITATIONS
109	E3 ubiquitin ligase Cblb regulates the acute inflammatory response underlying lung injury. Nature Medicine, 2007, 13, 920-926.	15.2	90
110	Caveolin- $1\hat{a}\in \text{``eNOS'}$ signaling promotes p190RhoGAP-A nitration and endothelial permeability. Journal of Cell Biology, 2011, 193, 841-850.	2.3	90
111	Protease-activated Receptor-1 Activation of Endothelial Cells Induces Protein Kinase Cα-dependent Phosphorylation of Syntaxin 4 and Munc18c. Journal of Biological Chemistry, 2005, 280, 3178-3184.	1.6	89
112	Tiam1 and Rac1 Are Required for Platelet-activating Factor-induced Endothelial Junctional Disassembly and Increase in Vascular Permeability. Journal of Biological Chemistry, 2009, 284, 5381-5394.	1.6	89
113	ICAM-1–activated Src and eNOS signaling increase endothelial cell surface PECAM-1 adhesivity and neutrophil transmigration. Blood, 2012, 120, 1942-1952.	0.6	88
114	Tumor Necrosis Factor-α Induces Nuclear Factor-κB-dependent TRPC1 Expression in Endothelial Cells. Journal of Biological Chemistry, 2003, 278, 37195-37203.	1.6	87
115	GÎ ² Î ³ Activation of Src Induces Caveolae-mediated Endocytosis in Endothelial Cells. Journal of Biological Chemistry, 2004, 279, 48055-48062.	1.6	86
116	STAT6 induces expression of Gas6 in macrophages to clear apoptotic neutrophils and resolve inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16513-16518.	3.3	86
117	FoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by <i>Pseudomonas aeruginosa</i> . Journal of Experimental Medicine, 2011, 208, 1473-1484.	4.2	85
118	Protein kinase C \hat{l}^21 overexpression augments phorbol ester-induced increase in endothelial permeability. , 1996, 166, 249-255.		84
119	Reversibility of increased microvessel permeability in response to VE-cadherin disassembly. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L1218-L1225.	1.3	84
120	Functional role of TRPC channels in the regulation of endothelial permeability. Pflugers Archiv European Journal of Physiology, 2005, 451, 131-142.	1.3	84
121	Modulatory role of focal adhesion kinase in regulating human pulmonary arterial endothelial barrier function. Journal of Physiology, 2002, 539, 779-789.	1.3	83
122	Cdc42 Regulates Adherens Junction Stability and Endothelial Permeability by Inducing α-Catenin Interaction With the Vascular Endothelial Cadherin Complex. Circulation Research, 2006, 98, 73-80.	2.0	83
123	PKCα Activation of p120-Catenin Serine 879 Phospho-Switch Disassembles VE-Cadherin Junctions and Disrupts Vascular Integrity. Circulation Research, 2012, 111, 739-749.	2.0	83
124	Dlk1-Mediated Temporal Regulation of Notch Signaling Is Required for Differentiation of Alveolar Type II to Type I Cells during Repair. Cell Reports, 2019, 26, 2942-2954.e5.	2.9	80
125	Role of H2O2-activated TRPM2 calcium channel in oxidant-induced endothelial injury. Thrombosis and Haemostasis, 2009, 101, 619-625.	1.8	79
126	Protein kinase C modifications of VE-cadherin, p120, and \hat{l}^2 -catenin contribute to endothelial barrier dysregulation induced by thrombin. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L434-L442.	1.3	78

#	Article	IF	Citations
127	Cholesterol-dependent Syntaxin-4 and SNAP-23 Clustering Regulates Caveolar Fusion with the Endothelial Plasma Membrane. Journal of Biological Chemistry, 2005, 280, 37130-37138.	1.6	78
128	Neutrophil caveolin-1 expression contributes to mechanism of lung inflammation and injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L178-L186.	1.3	78
129	The transcription factor DREAM represses the deubiquitinase A20 and mediates inflammation. Nature Immunology, 2014, 15, 239-247.	7.0	77
130	Ca2+ Entry via TRPC Channels Is Necessary for Thrombin-induced NF-κB Activation in Endothelial Cells through AMP-activated Protein Kinase and Protein Kinase Cδ. Journal of Biological Chemistry, 2009, 284, 563-574.	1.6	76
131	ROS-activated calcium signaling mechanisms regulating endothelial barrier function. Cell Calcium, 2016, 60, 163-171.	1.1	73
132	Glutamine Metabolism Regulates the Pluripotency Transcription Factor OCT4. Cell Reports, 2016, 16, 323-332.	2.9	70
133	Synergistic effects of tumor necrosis factor-α and thrombin in increasing endothelial permeability. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L958-L968.	1.3	68
134	RhoGDI-1 Modulation of the Activity of Monomeric RhoGTPase RhoA Regulates Endothelial Barrier Function in Mouse Lungs. Circulation Research, 2007, 101, 50-58.	2.0	68
135	Differential Role of CD18 Integrins in Mediating Lung Neutrophil Sequestration and Increased Microvascular Permeability Induced by <i>Escherichia coli</i> in Mice. Journal of Immunology, 2001, 167, 2895-2901.	0.4	67
136	Augmented inducible nitric oxide synthase expression and increased NO production reduce sepsis-induced lung injury and mortality in myeloperoxidase-null mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L96-L103.	1.3	67
137	Caveolin-1 Deficiency Dampens Toll-Like Receptor 4 Signaling through eNOS Activation. American Journal of Pathology, 2010, 176, 2344-2351.	1.9	67
138	Fibronectin enhances the migration rate of human neutrophils in vitro. Journal of Leukocyte Biology, 1996, 60, 199-206.	1.5	65
139	GDI-1 Phosphorylation Switch at Serine 96 Induces RhoA Activation and Increased Endothelial Permeability. Molecular and Cellular Biology, 2007, 27, 6323-6333.	1.1	65
140	Myocardium defects and ventricular hypoplasia in mice homozygous null for the Forkhead Box m1 transcription factor. Developmental Dynamics, 2007, 236, 1000-1013.	0.8	65
141	Innate Immune Function of the Adherens Junction Protein p120-Catenin in Endothelial Response to Endotoxin. Journal of Immunology, 2011, 186, 3180-3187.	0.4	63
142	A critical role for Lyn kinase in strengthening endothelial integrity and barrier function. Blood, 2013, 122, 4140-4149.	0.6	63
143	Rac1 functions as a reversible tension modulator to stabilize VE-cadherin trans-interaction. Journal of Cell Biology, 2015, 208, 23-32.	2.3	63
144	Engineered ACE2 decoy mitigates lung injury and death induced by SARS-CoV-2 variants. Nature Chemical Biology, 2022, 18, 342-351.	3.9	63

#	Article	IF	CITATIONS
145	Neutrophil Activation of Endothelial Cell-Expressed TRPM2 Mediates Transendothelial Neutrophil Migration and Vascular Injury. Circulation Research, 2017, 121, 1081-1091.	2.0	62
146	Requirement for Ca ²⁺ signaling in the mechanism of thrombin-induced increase in endothelial permeability. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L239-L247.	1.3	61
147	Cooperative Interaction of <i>trp</i> Melastatin Channel Transient Receptor Potential (TRPM2) With Its Splice Variant TRPM2 Short Variant Is Essential for Endothelial Cell Apoptosis. Circulation Research, 2014, 114, 469-479.	2.0	61
148	Ca2+ Influx Induced by Protease-activated Receptor-1 Activates a Feed-forward Mechanism of TRPC1 Expression via Nuclear Factor-l ^o B Activation in Endothelial Cells. Journal of Biological Chemistry, 2006, 281, 20715-20727.	1.6	60
149	Evidence of a common mechanism of disassembly of adherens junctions through $\widehat{Gl}\pm 13$ targeting of VE-cadherin. Journal of Experimental Medicine, 2014, 211, 579-591.	4.2	60
150	Thrombin-induced adherence of neutrophils to cultured endothelial monolayers: Increased endothelial adhesiveness. Journal of Cellular Physiology, 1988, 134, 275-280.	2.0	59
151	Nitric Oxide Stimulates Macrophage Inflammatory Protein-2 Expression in Sepsis. Journal of Immunology, 2002, 169, 2093-2101.	0.4	58
152	VE-cadherin-induced Cdc42 Signaling Regulates Formation of Membrane Protrusions in Endothelial Cells. Journal of Biological Chemistry, 2003, 278, 16230-16236.	1.6	58
153	FoxM1 regulates re-annealing of endothelial adherens junctions through transcriptional control of \hat{l}^2 -catenin expression. Journal of Experimental Medicine, 2010, 207, 1675-1685.	4.2	58
154	Endothelial p $110\hat{l}^3$ PI3K Mediates Endothelial Regeneration and Vascular Repair After Inflammatory Vascular Injury. Circulation, 2016, 133, 1093-1103.	1.6	58
155	Transport of nitrated albumin across continuous vascular endothelium. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13932-13937.	3.3	57
156	Using cultured endothelial cells to study endothelial barrier dysfunction: Challenges and opportunities. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L453-L466.	1.3	55
157	The angiocrine Rspondin3 instructs interstitial macrophage transition via metabolic–epigenetic reprogramming and resolves inflammatory injury. Nature Immunology, 2020, 21, 1430-1443.	7.0	55
158	Thrombin Receptors Activate Go Proteins in Endothelial Cells to Regulate Intracellular Calcium and Cell Shape Changes. Journal of Biological Chemistry, 2002, 277, 34143-34149.	1.6	54
159	NF-κB regulates thrombin-induced ICAM-1 gene expression in cooperation with NFAT by binding to the intronic NF-κB site in the ICAM-1 gene. Physiological Genomics, 2009, 38, 42-53.	1.0	54
160	TRP channels and the control of vascular function. Current Opinion in Pharmacology, 2010, 10, 127-132.	1.7	54
161	Oxidant Sensing by TRPM2 Inhibits Neutrophil Migration and Mitigates Inflammation. Developmental Cell, 2016, 38, 453-462.	3.1	54
162	Rab11a Mediates Vascular Endothelial-Cadherin Recycling and Controls Endothelial Barrier Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 339-349.	1.1	54

#	Article	IF	Citations
163	Culture and characterization of pulmonary microvascular endothelial cells. In Vitro Cellular & Developmental Biology, 1992, 28, 711-715.	1.0	53
164	Endothelial Barrier Function Journal of Investigative Dermatology, 1989, 93, 62S-67S.	0.3	52
165	Caspase-11 Mediates Pyroptosis of Tubular Epithelial Cells and Septic Acute Kidney Injury. Kidney and Blood Pressure Research, 2019, 44, 465-478.	0.9	52
166	Bone Marrow Progenitor Cells Induce Endothelial Adherens Junction Integrity by Sphingosine-1-Phosphate–Mediated Rac1 and Cdc42 Signaling. Circulation Research, 2009, 105, 696-704.	2.0	51
167	SHIP2 Is Recruited to the Cell Membrane upon Macrophage Colony-Stimulating Factor (M-CSF) Stimulation and Regulates M-CSF-Induced Signaling. Journal of Immunology, 2004, 173, 6820-6830.	0.4	50
168	cAMP targeting of p38 MAP kinase inhibits thrombin-induced NF-κB activation and ICAM-1 expression in endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L1017-L1024.	1.3	49
169	VE-Cadherin Signaling Induces EB3 Phosphorylation to Suppress Microtubule Growth and Assemble Adherens Junctions. Molecular Cell, 2012, 48, 914-925.	4.5	49
170	Mechanosensing Piezo channels in tissue homeostasis including their role in lungs. Pulmonary Circulation, 2018, 8, 1-6.	0.8	49
171	N-cadherin signaling via Trio assembles adherens junctions to restrict endothelial permeability. Journal of Cell Biology, 2019, 218, 299-316.	2.3	49
172	Gasdermin D pores are dynamically regulated by local phosphoinositide circuitry. Nature Communications, 2022, 13, 52.	5.8	49
173	Serum albumin decreases transendothelial permeability to macromolecules. Microvascular Research, 1991, 42, 91-102.	1.1	48
174	Bradykinin- and thrombin-induced increases in endothelial permeability occur independently of phospholipase C but require protein kinase C activation., 1997, 173, 387-396.		48
175	Store-operated Ca2+ Entry (SOCE) Induced by Protease-activated Receptor-1 Mediates STIM1 Protein Phosphorylation to Inhibit SOCE in Endothelial Cells through AMP-activated Protein Kinase and p38 \hat{l}^2 Mitogen-activated Protein Kinase. Journal of Biological Chemistry, 2013, 288, 17030-17041.	1.6	48
176	Cooperative Signaling via Transcription Factors NF-κB and AP1/c-Fos Mediates Endothelial Cell STIM1 Expression and Hyperpermeability in Response to Endotoxin. Journal of Biological Chemistry, 2014, 289, 24188-24201.	1.6	48
177	Combinatorial Therapy with Acetylation and Methylation Modifiers Attenuates Lung Vascular Hyperpermeability in Endotoxemia-Induced Mouse Inflammatory Lung Injury. American Journal of Pathology, 2014, 184, 2237-2249.	1.9	48
178	Src Phosphorylation of Endothelial Cell Surface Intercellular Adhesion Molecule-1 Mediates Neutrophil Adhesion and Contributes to the Mechanism of Lung Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1342-1350.	1.1	47
179	Moesin and myosin phosphatase confine neutrophil orientation in a chemotactic gradient. Journal of Experimental Medicine, 2015, 212, 267-280.	4.2	47
180	Evidence of Transcellular Permeability Pathway in Microvessels. Microvascular Research, 2001, 61, 87-101.	1.1	46

#	Article	IF	Citations
181	A Critical Role for Phosphatidylinositol (3,4,5)-Trisphosphate $\hat{a}\in$ Dependent Rac Exchanger 1 in Endothelial Junction Disruption and Vascular Hyperpermeability. Circulation Research, 2012, 111, 1517-1527.	2.0	46
182	TRPM2 Channel Regulates Endothelial Barrier Function. Advances in Experimental Medicine and Biology, 2010, 661, 155-167.	0.8	46
183	Time course of recovery of endothelial cell surface thrombin receptor (PAR-1) expression. American Journal of Physiology - Cell Physiology, 1999, 276, C38-C45.	2.1	44
184	Blockade of Class IA Phosphoinositide 3-Kinase in Neutrophils Prevents NADPH Oxidase Activation- and Adhesion-dependent Inflammation. Journal of Biological Chemistry, 2007, 282, 6116-6125.	1.6	44
185	Cdc42 Regulates the Restoration of Endothelial Adherens Junctions and Permeability. Trends in Cardiovascular Medicine, 2007, 17, 151-156.	2.3	44
186	Alveolar Stretch Activation of Endothelial Piezo1 Protects Adherens Junctions and Lung Vascular Barrier. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 168-177.	1.4	44
187	Role of H(2)O(2)-activated TRPM2 calcium channel in oxidant-induced endothelial injury. Thrombosis and Haemostasis, 2009, 101, 619-25.	1.8	44
188	\hat{l}^2 (sub>2-Integrin Blockade Driven by E-Selectin Promoter Prevents Neutrophil Sequestration and Lung Injury in Mice. Circulation Research, 2000, 87, 254-260.	2.0	42
189	Lectin binding to gp60 decreases specific albumin binding and transport in pulmonary artery endothelial monolayers. Journal of Cellular Physiology, 1991, 149, 575-584.	2.0	41
190	Protein kinase C \hat{l}^2 modulates thrombin-induced Ca2+ signaling and endothelial permeability increase. Journal of Cellular Physiology, 1998, 175, 379-387.	2.0	41
191	Lipid Phosphate Phosphatase 3 Stabilization of \hat{l}^2 -Catenin Induces Endothelial Cell Migration and Formation of Branching Point Structures. Molecular and Cellular Biology, 2010, 30, 1593-1606.	1.1	41
192	Activation of Type II Cells into Regenerative Stem Cell Antigen-1 ⁺ Cells during Alveolar Repair. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 113-124.	1.4	41
193	Sphingosine-1-Phosphate Receptor 1 Activity Promotes Tumor Growth by Amplifying VEGF-VEGFR2 Angiogenic Signaling. Cell Reports, 2019, 29, 3472-3487.e4.	2.9	41
194	Site-specific thrombin receptor antibodies inhibit Ca ²⁺ signaling and increased endothelial permeability. American Journal of Physiology - Cell Physiology, 1997, 273, C1756-C1763.	2.1	40
195	KIF13B regulates angiogenesis through golgi-plasma membrane trafficking of VEGFR2. Journal of Cell Science, 2014, 127, 4518-30.	1.2	40
196	Novel Role of Reactive Oxygen Species–Activated <i>trp</i> Melastatin Channel-2 in Mediating Angiogenesis and Postischemic Neovascularization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 877-887.	1.1	40
197	Histone Demethylases KDM4A and KDM4C Regulate Differentiation of Embryonic Stem Cells to Endothelial Cells. Stem Cell Reports, 2015, 5, 10-21.	2.3	40
198	VE-PTP stabilizes VE-cadherin junctions and the endothelial barrier via a phosphatase-independent mechanism. Journal of Cell Biology, 2019, 218, 1725-1742.	2.3	40

#	Article	IF	Citations
199	Mechanisms of Thrombin-induced Lung Vascular Injury and Edema. The American Review of Respiratory Disease, 1987, 136, 467-470.	2.9	39
200	Role of phagosomal redox-sensitive <i>trp</i> channel TRPM2 in regulating bactericidal activity of macrophages. Journal of Cell Science, 2017, 130, 735-744.	1.2	39
201	Angiocrine Sphingosine-1-Phosphate Activation of S1PR2-YAP Signaling Axis in Alveolar Type II Cells Is Essential for Lung Repair. Cell Reports, 2020, 31, 107828.	2.9	38
202	Bioluminescent detection of peroxynitrite with a boronic acid-caged luciferin. Free Radical Biology and Medicine, 2013, 61, 40-50.	1.3	37
203	Differential Role for p120-Catenin in Regulation of TLR4 Signaling in Macrophages. Journal of Immunology, 2014, 193, 1931-1941.	0.4	37
204	Endothelial Barrier Function. Journal of Investigative Dermatology, 1989, 93, S62-S67.	0.3	36
205	Role of albumin arginyl sites in albumin-induced reduction of endothelial hydraulic conductivity. Journal of Cellular Physiology, 1989, 141, 558-564.	2.0	36
206	Microtubule-Associated Protein EB3 Regulates IP3 Receptor Clustering and Ca2+ Signaling in Endothelial Cells. Cell Reports, 2015, 12, 79-89.	2.9	35
207	Embryonic Stem Cell Differentiation to Functional Arterial Endothelial Cells through Sequential Activation of ETV2 and NOTCH1 Signaling by HIF1α. Stem Cell Reports, 2017, 9, 796-806.	2.3	35
208	Inactivation of CD11b in a mouse transgenic model protects against sepsis-induced lung PMN infiltration and vascular injury. Physiological Genomics, 2005, 21, 230-242.	1.0	34
209	Role of protein kinase \hat{Clq} in thrombin-induced RhoA activation and inter-endothelial gap formation of human dermal microvessel endothelial cell monolayers. Microvascular Research, 2010, 80, 240-249.	1.1	34
210	Cytoskeletal Dynamics and Lung Fluid Balance. , 2012, 2, 449-478.		33
211	Nanoparticle targeting of de novo profibrotic macrophages mitigates lung fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121098119.	3.3	33
212	The GTPase Rab1 Is Required for NLRP3 Inflammasome Activation and Inflammatory Lung Injury. Journal of Immunology, 2019, 202, 194-206.	0.4	32
213	Albumin endocytosis in endothelial cells induces TGF-β receptor II signaling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L1016-L1026.	1.3	31
214	Protein kinase $C\hat{l}^2$ regulates heterologous desensitization of thrombin receptor (PAR-1) in endothelial cells. American Journal of Physiology - Cell Physiology, 1998, 274, C387-C395.	2.1	30
215	Role of phosphatidylinositol 3-kinase- \hat{l}^3 in mediating lung neutrophil sequestration and vascular injury induced by E. coli sepsis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L1094-L1103.	1.3	30
216	Critical role of Cdc42 in mediating endothelial barrier protection in vivo. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L363-L369.	1.3	30

#	Article	IF	CITATIONS
217	A Novel Function of Sphingosine Kinase 1 Suppression of JNK Activity in Preventing Inflammation and Injury. Journal of Biological Chemistry, 2010, 285, 15848-15857.	1.6	30
218	Aberrant caveolin-1–mediated Smad signaling and proliferation identified by analysis of adenine 474 deletion mutation (c.474delA) in patient fibroblasts: a new perspective on the mechanism of pulmonary hypertension. Molecular Biology of the Cell, 2017, 28, 1177-1185.	0.9	30
219	Cellular and humoral mediators of pulmonary edema. Lung, 1985, 163, 193-219.	1.4	29
220	Cellular and molecular biology for intensivists: A primer—Endothelial cells. Critical Care Medicine, 2005, 33, S517-S519.	0.4	29
221	Requirement of $\hat{l}\pm4\hat{l}^21$ and $\hat{l}\pm5\hat{l}^21$ Integrin Expression in Bone-Marrow Derived Progenitor Cells in Preventing Endotoxin-Induced Lung Vascular Injury and Edema in Mice. Stem Cells, 2009, 27, N/A-N/A.	1.4	29
222	Thrombin-Induced Alterations in Endothelial Permeability. Annals of the New York Academy of Sciences, 1986, 485, 293-309.	1.8	28
223	Selectivity of the endothelial monolayer: Effects of increased permeability. Microvascular Research, 1988, 36, 216-227.	1.1	28
224	<i>E. coli</i> pneumonia induces CD18-independent airway neutrophil migration in the absence of increased lung vascular permeability. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L879-L888.	1.3	28
225	Role of endothelial injury in disease mechanisms and contribution of progenitor cells in mediating endothelial repair. Immunobiology, 2012, 217, 569-580.	0.8	28
226	SOX17 Regulates Conversion of Human Fibroblasts Into Endothelial Cells and Erythroblasts by Dedifferentiation Into CD34 ⁺ Progenitor Cells. Circulation, 2017, 135, 2505-2523.	1.6	28
227	Ca ²⁺ influx via TRPC channels induces NF-κB-dependent A20 expression to prevent thrombin-induced apoptosis in endothelial cells. American Journal of Physiology - Cell Physiology, 2010, 298, C656-C664.	2.1	27
228	Flk1+ and VE-Cadherin+ Endothelial Cells Derived from iPSCs Recapitulates Vascular Development during Differentiation and Display Similar Angiogenic Potential as ESC-Derived Cells. PLoS ONE, 2013, 8, e85549.	1.1	27
229	Integrin $\hat{l}\pm6\hat{l}^21$ Expressed in ESCs Instructs the Differentiation to Endothelial Cells. Stem Cells, 2015, 33, 1719-1729.	1.4	27
230	Inactivation of Rablla GTPase in Macrophages Facilitates Phagocytosis of Apoptotic Neutrophils. Journal of Immunology, 2017, 198, 1660-1672.	0.4	27
231	Plasmin generation induces neutrophil aggregation: Dependence on the catalytic and lysine binding sites. Journal of Cellular Physiology, 1992, 151, 255-261.	2.0	26
232	Interaction of a Specific Population of Human Embryonic Stem Cell–Derived Progenitor Cells with CD11b+ Cells Ameliorates Sepsis-Induced Lung Inflammatory Injury. American Journal of Pathology, 2011, 178, 313-324.	1.9	26
233	Sphingosine Kinase 1 Mediation of Expression of the Anaphylatoxin Receptor C5L2 Dampens the Inflammatory Response to Endotoxin. PLoS ONE, 2012, 7, e30742.	1.1	26
234	Bioenergetic Shifts during Transitions between Stem Cell States (2013 Grover Conference Series). Pulmonary Circulation, 2014, 4, 387-394.	0.8	24

#	Article	IF	CITATIONS
235	LIM Kinase 1 Promotes Endothelial Barrier Disruption and Neutrophil Infiltration in Mouse Lungs. Circulation Research, 2009, 105, 549-556.	2.0	23
236	Nanoparticles squeezing across the blood–endothelial barrier via caveolae. Therapeutic Delivery, 2013, 4, 131-133.	1.2	23
237	Method for Dual Viral Vector Mediated CRISPR-Cas9 Gene Disruption in Primary Human Endothelial Cells. Scientific Reports, 2017, 7, 42127.	1.6	23
238	Programming to S1PR1 ⁺ Endothelial Cells Promotes Restoration of Vascular Integrity. Circulation Research, 2021, 129, 221-236.	2.0	23
239	Role of Tyr143 phosphorylation of S1PR1 in downregulating endothelial cell surface S1PR1 expression and responsiveness. Journal of Cell Science, 2015, 128, 878-87.	1.2	22
240	Time-Variant SRC Kinase Activation Determines Endothelial Permeability Response. Cell Chemical Biology, 2019, 26, 1081-1094.e6.	2.5	22
241	Neutrophil adhesion to endothelial cells impairs the effects of catalase and glutathione in preventing endothelial injury. Journal of Cellular Physiology, 1993, 155, 234-239.	2.0	21
242	Pyk2 phosphorylation of VE-PTP downstream of STIM1-induced Ca ²⁺ entry regulates disassembly of adherens junctions. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L1003-L1017.	1.3	21
243	High-loading $\widehat{\text{Gl}}_\pm$ _{13} -binding EXE peptide nanoparticles prevent thrombosis and protect mice from cardiac ischemia/reperfusion injury. Science Translational Medicine, 2020, 12, .	5.8	21
244	Single-cell transcriptomic profiling of lung endothelial cells identifies dynamic inflammatory and regenerative subpopulations. JCI Insight, 2022, 7, .	2.3	21
245	Interleukin-1RA Mitigates SARS-CoV-2–Induced Inflammatory Lung Vascular Leakage and Mortality in Humanized K18-hACE-2 Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2773-2785.	1.1	20
246	Neutrophil adhesion to TNF?-activated endothelial cells potentiates leukotrine B4 production. Journal of Cellular Physiology, 1992, 153, 187-195.	2.0	19
247	Regulation of lung neutrophil recruitment by VE-cadherin. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L764-L771.	1.3	19
248	Bone marrow-derived progenitor cells prevent thrombin-induced increase in lung vascular permeability. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L36-L44.	1.3	19
249	Permeability of Endothelial Barrier: Cell Culture and In Vivo Models. Methods in Molecular Biology, 2011, 763, 333-354.	0.4	19
250	Time-dependent reversal of sepsis-induced PMN uptake and lung vascular injury by expression of CD18 antagonist. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L796-L802.	1.3	18
251	p120-Catenin Expressed in Alveolar Type II Cells Is Essential for the Regulation of Lung Innate Immune Response. American Journal of Pathology, 2015, 185, 1251-1263.	1.9	18
252	Mechanisms of Lung Injury Induced by SARS-CoV-2 Infection. Physiology, 2022, 37, 88-100.	1.6	18

#	Article	IF	Citations
253	Induced Pluripotent Stem (iPS) Cell Culture Methods and Induction of Differentiation into Endothelial Cells. Methods in Molecular Biology, 2015, 1357, 311-327.	0.4	17
254	A Tie2-Notch1 signaling axis regulates regeneration of the endothelial bone marrow niche. Haematologica, 2019, 104, 2164-2177.	1.7	17
255	Phospholipase D2 restores endothelial barrier function by promoting PTPN14-mediated VE-cadherin dephosphorylation. Journal of Biological Chemistry, 2020, 295, 7669-7685.	1.6	17
256	VEGFR2 Trafficking by KIF13B Is a Novel Therapeutic Target for Wet Age-Related Macular Degeneration. , 2021, 62, 5.		17
257	Therapeutic Administration of the Chemokine CXCL1/KC Abrogates Autoimmune Inflammatory Heart Disease. PLoS ONE, 2014, 9, e89647.	1.1	16
258	Comprehensive transcriptomic profiling reveals SOX7 as an early regulator of angiogenesis in hypoxic human endothelial cells. Journal of Biological Chemistry, 2020, 295, 4796-4808.	1.6	15
259	Pulmonary Hemodynamic Effects of Antisheep Serum-Induced Leukopenia. Journal of Leukocyte Biology, 1986, 39, 385-397.	1.5	14
260	Increased Endothelial Permeability after Neutrophil Activation Occurs by a Diffusion-Dependent Mechanism. Microvascular Research, 1995, 49, 227-232.	1.1	14
261	Oxidant signaling in lung cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L1-L3.	1.3	14
262	PAR1 Scaffolds TGFβRII to Downregulate TGF-β Signaling and Activate ESC Differentiation to Endothelial Cells. Stem Cell Reports, 2016, 7, 1050-1058.	2.3	14
263	Antiangiogenic Therapeutic Potential of Peptides Derived from the Molecular Motor KIF13B that Transports VEGFR2 to Plasmalemma in Endothelial Cells. American Journal of Pathology, 2017, 187, 214-224.	1.9	14
264	PV1 in Caveolae Controls Lung Endothelial Permeability. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 531-539.	1.4	14
265	Albumin Nanoparticle Endocytosing Subset of Neutrophils for Precision Therapeutic Targeting of Inflammatory Tissue Injury. ACS Nano, 2022, 16, 4084-4101.	7.3	14
266	Evaluation of endothelin receptor populations using endothelin-1 biotinylated at lysine-9 sidechain. Biochemical and Biophysical Research Communications, 1991, 181, 1245-1250.	1.0	13
267	Fibrin contact increases endothelial permeability to albumin. Journal of Cellular Physiology, 1992, 151, 63-70.	2.0	13
268	Regulating the regulator of ROS production. Cell Research, 2014, 24, 908-909.	5.7	13
269	Polymorphonuclear leucocyte (PMN) inhibitory factor prevents PMN-dependent endothelial cell injury by an anti-adhesive mechanism. Journal of Cellular Physiology, 1997, 171, 212-216.	2.0	10
270	De novo ICAM-1 synthesis in the mouse lung: model of assessment of protein expression in lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L496-L501.	1.3	10

#	Article	IF	Citations
271	Mimicking transient activation of protein kinases in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14976-14981.	3.3	10
272	A computational approach to identifyÂcellular heterogeneity andÂtissue-specific gene regulatory networks. BMC Bioinformatics, 2018, 19, 217.	1.2	10
273	Septin2 mediates podosome maturation and endothelial cell invasion associated with angiogenesis. Journal of Cell Biology, 2020, 219, .	2.3	10
274	FGF Signaling Preserves the Integrity of Endothelial Adherens Junctions. Developmental Cell, 2008, 15, 335-336.	3.1	9
275	Pseudomonas aeruginosa Induced Lung Injury Model. Journal of Visualized Experiments, 2014, , e52044.	0.2	9
276	EphB1 interaction with caveolin-1 in endothelial cells modulates caveolae biogenesis. Molecular Biology of the Cell, 2020, 31, 1167-1182.	0.9	8
277	Quantitative Pulmonary Neutrophil Dynamics Using Computer-Vision Stabilized Intravital Imaging. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 12-22.	1.4	7
278	Mechanisms of lung vascular injury and edema after pulmonary microembolism. Journal of Critical Care, 1989, 4, 118-126.	1.0	6
279	KIF13B-mediated VEGFR2 trafficking is essential for vascular leakage and metastasis in vivo. Life Science Alliance, 2022, 5, e202101170.	1.3	6
280	Thrombin enhances opsonized zymosan-induced chemiluminescence of neutrophils. Tissue and Cell, 1988, 20, 13-17.	1.0	5
281	Reprogramming Fibroblasts to Endothelial Cells. Circulation, 2014, 130, 1136-1138.	1.6	5
282	Genetic Variation Is the Major Determinant of Individual Differences in Leukocyte Endothelial Adhesion. PLoS ONE, 2014, 9, e87883.	1.1	5
283	Chapter 8 Reactive Oxygen Species and Endothelial Permeability. Current Topics in Membranes, 2008, 61, 147-189.	0.5	4
284	Contribution and Regulation of Calcium Channels in Endothelial Cells. , 2016, , 37-62.		4
285	Role of Piezo1 in cAMPâ€Dependent Calcium Release From ER Stores in Endothelial Cells. FASEB Journal, 2019, 33, 809.9.	0.2	3
286	CD38-Mediated Inhibition of Bruton's Tyrosine Kinase in Macrophages Prevents Endotoxemic Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2021, , .	1.4	3
287	Caveolae and Signaling in Pulmonary Vascular Endothelial and Smooth Muscle Cells. , 2011, , 273-285.		2
288	Notch1 promotes ordered revascularization through Semaphorin 3g modulation of downstream vascular patterning signalling factors. Journal of Physiology, 2022, 600, 509-530.	1.3	2

#	Article	IF	Citations
289	Response by Komarova et al to Letter Regarding Article, "Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability― Circulation Research, 2017, 120, e28.	2.0	1
290	Response by Mittal et al to Letter Regarding Article, "Neutrophil Activation of Endothelial Cell-Expressed TRPM2 Mediates Transendothelial Neutrophil Migration and Vascular Injury― Circulation Research, 2017, 121, e87.	2.0	1
291	Aberrant Caveolin-1-Mediated Smad Signaling and Proliferation Identified by Analysis of Adenine 474 Deletion Mutation (c.474delA) in Patient Fibroblasts: A New Perspective in the Mechanism of Pulmonary Hypertension. Molecular Biology of the Cell, 2018, , mbc.E16-06-0380.	0.9	1
292	Nitration of p190RhoGAP secondary to caveolaeâ€mediated endocytosis increases endothelial junctional permeability. FASEB Journal, 2009, 23, 121.8.	0.2	1
293	Albumin transcytosis in mesothelium: further evidence of a transcellular pathway in polarized cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L1-L2.	1.3	0
294	Proteaseâ€Activated Receptor Dimerization and Signaling. FASEB Journal, 2006, 20, A251.	0.2	0
295	Intersectin Regulates Endothelial Cell Junction Integrity. FASEB Journal, 2006, 20, A752.	0.2	0
296	Regulator of G Protein Signaling 2 (RGS2) Inhibits Intracellular Ca2+ Mobilization and RhoA Activation: Role in Regulation of Endothelial Permeability. FASEB Journal, 2006, 20, A256.	0.2	0
297	Caveolinâ€1 scaffolding domain regulates storeâ€operated Ca 2+ influx by binding to TRPC1 in endothelial cells. FASEB Journal, 2006, 20, A116.	0.2	O
298	Reduction in Pulmonary Vessel Wall Hydraulic Conductivity in Endothelial Nitric Oxide Synthase Null Mice. FASEB Journal, 2006, 20, A671.	0.2	0
299	Caveolinâ€1 Negatively Regulates NFâ€̂B Activation and the Lung Inflammatory Response to Sepsis by Controlling NO Production. FASEB Journal, 2006, 20, .	0.2	0
300	Realâ€time confocal imaging of caveolae trafficking in endothelial cells. FASEB Journal, 2006, 20, A843.	0.2	0
301	Caveolinâ€1 regulates oxidant generation in endothelial cells. FASEB Journal, 2007, 21, A1200.	0.2	О
302	FoxM1 Regulates Reâ€annealing of Endothelial Junctions Following Vascular Injury. FASEB Journal, 2007, 21, A860.	0.2	0
303	Activation of Tollâ€ike Receptors is a Critical Determinant of Lung Neutrophil Sequestration and Injury Induced by High Tidal Volume Mechanical Ventilation. FASEB Journal, 2007, 21, A1204.	0.2	O
304	Activation of Neutrophils (PMNs) Adherent to Endothelial Cells (ECs) Signals Ca2+ Entry via the Redoxâ€Sensitive TRPM2 Ca2+ Channel. FASEB Journal, 2007, 21, A447.	0.2	0
305	Transplantation of Bone Marrowâ€Derived Endothelial Progenitor Cells (BMâ€EPCs) Prevents Increased Lung Vascular Permeability and Edema in LPSâ€Induced Lung Injury. FASEB Journal, 2007, 21, A187.	0.2	0
306	Phosphorylation of caveolinâ€1 contributes to the mechanism of oxidantâ€induced endothelial hyperpermeability. FASEB Journal, 2008, 22, 928.3.	0.2	0

#	Article	IF	CITATIONS
307	Receptor Dimerization with EPCR Redirects PARâ€1 Signaling in Endothelial Cells. FASEB Journal, 2008, 22, 1178.2.	0.2	0
308	TRPCâ€1 knockdown abrogates nuclear factorâ€kBâ€dependent antiâ€apoptotic gene expression induced by thrombin in endothelial cells. FASEB Journal, 2008, 22, 830.3.	0.2	0
309	Role of TRPM2 Channels in Endothelial Ca2+ signaling and Transendothelial Migration of Neutrophil. FASEB Journal, 2008, 22, 1213.2.	0.2	O
310	Deletion of PKCalpha in mice attenuates the thrombinâ€induced increase in lung vascular permeability. FASEB Journal, 2008, 22, 1200.4.	0.2	0
311	Bone Marrowâ€Derived Endothelial Progenitor Cells Strengthen the Endothelial Barrier by a Rac1/Cdc42â€Mediated Adherens Junction Assembly. FASEB Journal, 2008, 22, 660-660.	0.2	O
312	PKCα REGULATION OF TRPM2 CHANNEL ACTIVATION OF Ca 2+ ENTRY IN ENDOTHELIAL CELLS. FASEB Journal, 2009, 23, 937.9.	0.2	0
313	TRPC1â€Mediated Ca2+ Entry Increases Lung Microvascular Permeability. FASEB Journal, 2009, 23, 964.9.	0.2	O
314	VEâ€cadherinâ€mediated signaling regulates microtubule dynamics. FASEB Journal, 2009, 23, 357.8.	0.2	0
315	Endothelial p120 catenin inhibits LPSâ€induced lung inflammatory injury by suppression of MAPK and NFâ€PB activation. FASEB Journal, 2010, 24, 797.10.	0.2	O
316	Requirement of a4b1 and a5b1 Integrin Expression in Boneâ€Marrow Derived Progenitor Cells in Preventing Endotoxinâ€Induced Lung Vascular Injury and Edema in Mice. FASEB Journal, 2010, 24, 39.5.	0.2	0
317	Genetic Evidence for PKCδ Signaling in Thrombinâ€Induced NFâ€ÎºB Activation in Endothelial Cells. FASEB Journal, 2010, 24, 833.22.	0.2	O
318	Microtubuleâ€associated protein EB3 regulates calcium signaling and facilitates increase in endothelial permeability. FASEB Journal, 2011, 25, lb496.	0.2	0
319	Localized activation of Rac1 promotes IQGAP1â€dependent VEâ€cadherin trans interaction: Role in junction stabilization. FASEB Journal, 2012, 26, 1063.5.	0.2	O
320	Pâ€Rex1 is critical for vascular hyperâ€permeability and edema in the lungs. FASEB Journal, 2012, 26, 842.10.	0.2	0
321	LPS/TLR4â€NFâ€{kappa]B axis signaling amplifies STIM1 expression to augment PARâ€1â€induced Calcium entry and permeability response in lung microvessels. FASEB Journal, 2012, 26, 571.2.	0.2	O
322	Downstream Effects of the Homophilic PECAM†Interaction in Neutrophils. FASEB Journal, 2012, 26, 55.7.	0.2	0
323	Role of adaptor protein IQGAP1 in regulating endothelial permeability of lung vessels. FASEB Journal, 2012, 26, 671.9.	0.2	O
324	Wnt Signaling Mediates Deâ€differentiation of Endothelial Cells during Neovascularization. FASEB Journal, 2012, 26, 1121.1.	0.2	0

#	Article	IF	CITATIONS
325	ROS Sensitive Calcium Channel TRPM2 Regulates VEGF Induced Angiogenesis. FASEB Journal, 2012, 26, 670.4.	0.2	O
326	PARâ€1 induced AMPKâ€p38 MAPK signaling axis mediates STIM1 phosphorylation to prevent calcium entry through TRPC channels in endothelial cells. FASEB Journal, 2012, 26, 1056.13.	0.2	0
327	Cation channel TRPC6 activation of TLR4 in endothelial cells mediates sepsisâ€induced acute lung injury. FASEB Journal, 2012, 26, 1130.5.	0.2	O
328	Activation of Rac1 at adherens junctions promotes VE adherin trans interaction. FASEB Journal, 2013, 27, 875.3.	0.2	0
329	Endothelial cellâ€specific STIM1 deletion prevents lung vascular leak. FASEB Journal, 2013, 27, 1047.4.	0.2	O
330	End Binding protein 3 regulates calcium signaling and permeability of the endothelial barrier. FASEB Journal, 2013, 27, 875.5.	0.2	0
331	Long Isoform of Myosin Light Chain Kinase Interacts with Calcium Releaseâ€Activated Calcium Channel Constituents to Induce an Amplified and Protracted Increase in Intracellular Calcium. FASEB Journal, 2013, 27, 724.8.	0.2	O
332	ADAM 17 Regulates S1PR1 Surface Expression by its Ectodomain Shedding thereby Disrupting Endothelial Barrier Function. FASEB Journal, 2015, 29, 627.7.	0.2	0
333	Pyk2â€Induced Tyrosine Phosphorylation of STIM1 at Y361 Residue Regulates Puncta Formation, Storeâ€Operated Calcium Entry and Lung Vascular Permeability. FASEB Journal, 2015, 29, 661.9.	0.2	O
334	Regulation of Endothelial Barrier Function. , 2005, , 73-90.		0