Rosa Collado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6322109/publications.pdf

Version: 2024-02-01

48 papers

1,333 citations

361045 20 h-index 35 g-index

48 all docs 48 docs citations

48 times ranked

2084 citing authors

#	Article	IF	CITATIONS
1	Chromosome banding analysis and genomic microarrays are both useful but not equivalent methods for genomic complexity risk stratification in chronic lymphocytic leukemia patients. Haematologica, 2022, 107, 593-603.	1.7	18
2	Balanced and unbalanced translocations in a multicentric series of 2843 patients with chronic lymphocytic leukemia. Genes Chromosomes and Cancer, 2022, 61, 37-43.	1.5	10
3	Optical Genome Mapping: A Promising New Tool to Assess Genomic Complexity in Chronic Lymphocytic Leukemia (CLL). Cancers, 2022, 14, 3376.	1.7	18
4	Clinical, biological, and prognostic implications of SF3B1 co-occurrence mutations in very low/low-and intermediate-risk MDS patients. Annals of Hematology, 2021, 100, 1995-2004.	0.8	9
5	Frontline treatment with the combination obinutuzumab $\hat{A}\pm$ chlorambucil for chronic lymphocytic leukemia outside clinical trials: Results of a multinational, multicenter study by ERIC and the Israeli CLL study group. American Journal of Hematology, 2020, 95, 604-611.	2.0	12
6	Prognosis Assessment of Early-Stage Chronic Lymphocytic Leukemia: Are We Ready to Predict Clinical Evolution Without a Crystal Ball?. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, 548-555.e4.	0.2	10
7	Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood, 2019, 133, 1205-1216.	0.6	164
8	Characterizing patients with multiple chromosomal aberrations detected by FISH in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2018, 59, 633-642.	0.6	8
9	Feasibility of treatment discontinuation in chronic myeloid leukemia in clinical practice: results from a nationwide series of 236 patients. Blood Cancer Journal, 2018, 8, 91.	2.8	38
10	The division of chronic myelomonocytic leukemia (CMML)-1 into CMML-0 and CMML-1 according to 2016 World Health Organization (WHO) classification has no impact in outcome in a large series of patients from the Spanish group of MDS. Leukemia Research, 2018, 70, 34-36.	0.4	15
11	A two-step approach for sequencing spliceosome-related genes as a complementary diagnostic assay in MDS patients with ringed sideroblasts. Leukemia Research, 2017, 56, 82-87.	0.4	4
12	Oxidative imbalance in low/intermediate-1-risk myelodysplastic syndrome patients: The influence of iron overload. Clinical Biochemistry, 2017, 50, 911-917.	0.8	18
13	Chronic lymphocytic leukemia with isochromosome 17q: An aggressive subgroup associated with TP53 mutations and complex karyotypes. Cancer Letters, 2017, 409, 42-48.	3.2	6
14	Clinical and biological significance of isolated Y chromosome loss in myelodysplastic syndromes and chronic myelomonocytic leukemia. A report from the Spanish MDS Group. Leukemia Research, 2017, 63, 85-89.	0.4	9
15	Excess mortality in the myelodysplastic syndromes. American Journal of Hematology, 2017, 92, 149-154.	2.0	15
16	A BCR-ABL1 cutoff of 1.5% at 3 months, determined by the GeneXpert system, predicts an optimal response in patients with chronic myeloid leukemia. PLoS ONE, 2017, 12, e0173532.	1.1	6
17	Patients with chronic lymphocytic leukemia and complex karyotype show an adverse outcome even in absence of <i>TP53/ATM FISH</i> deletions. Oncotarget, 2017, 8, 54297-54303.	0.8	44
18	Karyotypic complexity rather than chromosome 8 abnormalities aggravates the outcome of chronic lymphocytic leukemia patients with <i>TP53</i> aberrations. Oncotarget, 2016, 7, 80916-80924.	0.8	29

#	Article	IF	CITATIONS
19	A high proportion of cells carrying trisomy 12 is associated with a worse outcome in patients with chronic lymphocytic leukemia. Hematological Oncology, 2016, 34, 84-92.	0.8	26
20	Response to erythropoieticâ€stimulating agents in patients with chronic myelomonocytic leukemia. European Journal of Haematology, 2016, 97, 33-38.	1.1	23
21	Additional trisomies amongst patients with chronic lymphocytic leukemia carrying trisomy 12: the accompanying chromosome makes a difference. Haematologica, 2016, 101, e299-e302.	1.7	35
22	Prognostic impact of chromosomal translocations in myelodysplastic syndromes and chronic myelomonocytic leukemia patients. A study by the spanish group of myelodysplastic syndromes. Genes Chromosomes and Cancer, 2016, 55, 322-327.	1.5	7
23	A Low Frequency of Losses in 11q Chromosome Is Associated with Better Outcome and Lower Rate of Genomic Mutations in Patients with Chronic Lymphocytic Leukemia. PLoS ONE, 2015, 10, e0143073.	1.1	24
24	Correlation of myelodysplastic syndromes with i(17)(q10) and <i><scp>TP</scp>53</i> and <i><scp>SETBP</scp>1</i> mutations. British Journal of Haematology, 2015, 171, 137-141.	1.2	11
25	Use of newer prognostic indices for patients with myelodysplastic syndromes in the low and intermediate-1 risk categories: a population-based study. Lancet Haematology,the, 2015, 2, e260-e266.	2.2	24
26	Fluorescencein situhybridization analysis does not increase detection rate for trisomy 8 in chronic myelomonocytic leukemia. Leukemia and Lymphoma, 2015, 56, 242-243.	0.6	1
27	Vascular Endothelial Growth Factor A (VEGFA) Gene Polymorphisms Have an Impact on Survival in a Subgroup of Indolent Patients with Chronic Lymphocytic Leukemia. PLoS ONE, 2014, 9, e101063.	1.1	9
28	Distinction between Asymptomatic Monoclonal B-cell Lymphocytosis with Cyclin D1 Overexpression and Mantle Cell Lymphoma: From Molecular Profiling to Flow Cytometry. Clinical Cancer Research, 2014, 20, 1007-1019.	3.2	44
29	Increased Oxidative Damage Associated with Unfavorable Cytogenetic Subgroups in Chronic Lymphocytic Leukemia. BioMed Research International, 2014, 2014, 1-5.	0.9	12
30	Interstitial 13q14 deletions detected in the karyotype and translocations with concomitant deletion at 13q14 in chronic lymphocytic leukemia: Different genetic mechanisms but equivalent poorer clinical outcome. Genes Chromosomes and Cancer, 2014, 53, 788-797.	1.5	15
31	Transfusion dependence development and disease evolution in patients with MDS and del(5q) and without transfusion needs at diagnosis. Leukemia Research, 2014, 38, 304-309.	0.4	4
32	Reciprocal translocations in myelodysplastic syndromes and chronic myelomonocytic leukemias: Review of 5,654 patients with an evaluable karyotype. Genes Chromosomes and Cancer, 2013, 52, 753-763.	1.5	15
33	Application of FISH 7q in MDS patients without monosomy 7 or 7q deletion by conventional G-banding cytogenetics: Does â^'7/7qâ^' detection by FISH have prognostic value?. Leukemia Research, 2013, 37, 416-421.	0.4	16
34	Complex, Not Monosomal, Karyotype Is the Cytogenetic Marker of Poorest Prognosis in Patients With Primary Myelodysplastic Syndrome. Journal of Clinical Oncology, 2013, 31, 916-922.	0.8	65
35	Biallelic losses of 13q do not confer a poorer outcome in chronic lymphocytic leukaemia: analysis of 627 patients with isolated 13q deletion. British Journal of Haematology, 2013, 163, 47-54.	1.2	13
36	Prognostic value of trisomy 8 as a single anomaly and the influence of additional cytogenetic aberrations in primary myelodysplastic syndromes. British Journal of Haematology, 2012, 159, 311-321.	1.2	25

#	Article	IF	CITATIONS
37	Early ROS-mediated DNA damage and oxidative stress biomarkers in Monoclonal B Lymphocytosis. Cancer Letters, 2012, 317, 144-149.	3.2	24
38	Absence of mutations in the activation loop and juxtamembrane domains of VEGFR-1 and VEGFR-2 gene in chronic myelomonocytic leukemia (CMML). Leukemia Research, 2012, 36, e50-e51.	0.4	0
39	Chronic lymphocytic leukaemia with 17p deletion: a retrospective analysis of prognostic factors and therapy results. British Journal of Haematology, 2012, 157, 67-74.	1.2	39
40	Better prognosis for patients with $del(7q)$ than for patients with monosomy 7 in myelodysplastic syndrome. Cancer, 2012, 118, 127-133.	2.0	43
41	Cytogenetic risk stratification in chronic myelomonocytic leukemia. Haematologica, 2011, 96, 375-383.	1.7	226
42	Incidence and prognostic impact of secondary cytogenetic aberrations in a series of 145 patients with mantle cell lymphoma. Genes Chromosomes and Cancer, 2010, 49, 439-451.	1.5	68
43	Complex Variant t(9;22) Chromosome Translocations in Five Cases of Chronic Myeloid Leukemia. Advances in Hematology, 2009, 2009, 1-4.	0.6	16
44	Fluorescence in situ hybridization improves the detection of 5q31 deletion in myelodysplastic syndromes without cytogenetic evidence of 5q Haematologica, 2008, 93, 1001-1008.	1.7	36
45	Automated Neutrophil Morphology and Its Utility in the Assessment of Neutrophil Dysplasia. Laboratory Hematology: Official Publication of the International Society for Laboratory Hematology, 2007, 13, 98-102.	1.2	34
46	New translocations in a case of atypical B-cell chronic lymphocytic leukemia: involvement of ATM, MLL, and TP53 genes. Cancer Genetics and Cytogenetics, 2006, 169, 176-178.	1.0	4
47	A retrospective analysis of myelodysplastic syndromes with thrombocytosis: reclassification of the cases by WHO proposals. Leukemia Research, 2005, 29, 365-370.	0.4	28
48	Chromosome 11 Abnormalities in Myelodysplastic Syndromes. Cancer Genetics and Cytogenetics, 1999, 114, 58-61.	1.0	13