
Katrien Smits

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6322001/publications.pdf Version: 2024-02-01

KATDIEN SMITS

#	Article	IF	CITATIONS
1	Breeding or Assisted Reproduction? Relevance of the Horse Model Applied to the Conservation of Endangered Equids. Reproduction in Domestic Animals, 2012, 47, 239-248.	0.6	45
2	Proteins involved in embryo-maternal interaction around the signalling of maternal recognition of pregnancy in the horse. Scientific Reports, 2018, 8, 5249.	1.6	43
3	An improved vitrification protocol for equine immature oocytes, resulting in a first live foal. Equine Veterinary Journal, 2018, 50, 391-397.	0.9	41
4	Selection of reference genes for quantitative real-time PCR in equine in vivo and fresh and fresh frozen-thawed in vitro blastocysts. BMC Research Notes, 2009, 2, 246.	0.6	35
5	The Equine Embryo Influences Immune-Related Gene Expression in the Oviduct1. Biology of Reproduction, 2016, 94, 36.	1.2	34
6	Role of cumulus cells during vitrification and fertilization ofÂmature bovine oocytes: Effects on survival, fertilization, and blastocyst development. Theriogenology, 2016, 86, 635-641.	0.9	33
7	Proteome of equine oviducal fluid: effects of ovulation and pregnancy. Reproduction, Fertility and Development, 2017, 29, 1085.	0.1	28
8	In vivo-derived horse blastocysts show transcriptional upregulation of developmentally important genes compared with in vitro-produced horse blastocysts. Reproduction, Fertility and Development, 2011, 23, 364.	0.1	25
9	Procaine Induces Cytokinesis in Horse Oocytes via a pH-Dependent Mechanism1. Biology of Reproduction, 2015, 93, 23.	1.2	24
10	Hatching is modulated by microRNA-378a-3p derived from extracellular vesicles secreted by blastocysts. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122708119.	3.3	23
11	Influence of the uterine environment on the development of in vitro-produced equine embryos. Reproduction, 2012, 143, 173-181.	1.1	20
12	Single-cell genome-wide concurrent haplotyping and copy-number profiling through genotyping-by-sequencing. Nucleic Acids Research, 2022, 50, e63-e63.	6.5	17
13	Equine oviduct explant culture: a basic model to decipher embryo–maternal communication. Reproduction, Fertility and Development, 2014, 26, 954.	0.1	15
14	Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during pronuclear development in equine zygotes produced by ICSI. Epigenetics and Chromatin, 2017, 10, 13.	1.8	15
15	Maternal Recognition of Pregnancy in the Horse: Are MicroRNAs the Secret Messengers?. International Journal of Molecular Sciences, 2020, 21, 419.	1.8	10
16	Bta-miR-10b Secreted by Bovine Embryos Negatively Impacts Preimplantation Embryo Quality. Frontiers in Genetics, 2019, 10, 757.	1.1	9
17	Platelet-activating factor acetylhydrolase 1B3 (PAFAH1B3) is required for the formation of the meiotic spindle during in vitro oocyte maturation. Reproduction, Fertility and Development, 2018, 30, 1739.	0.1	7
18	Cryopreservation of equine oocytes: looking into the crystal ball. Reproduction, Fertility and Development, 2020, 32, 453.	0.1	7

KATRIEN SMITS

#	Article	IF	CITATIONS
19	Anti-Müllerian Hormone and OPU-ICSI Outcome in the Mare. Animals, 2021, 11, 2004.	1.0	7
20	New Alternative Mixtures of Cryoprotectants for Equine Immature Oocyte Vitrification. Animals, 2021, 11, 3077.	1.0	7
21	Asymmetric histone 3 methylation pattern between paternal and maternal pronuclei in equine zygotes. Analytical Biochemistry, 2015, 471, 67-69.	1.1	6
22	Steroids affect gene expression, ciliary activity, glucose uptake, progesterone receptor expression and immunoreactive steroidogenic protein expression in equine oviduct explants in vitro. Reproduction, Fertility and Development, 2016, 28, 1926.	0.1	6
23	Blastocyst production after intracytoplasmic sperm injection with semen from a stallion with testicular degeneration. Reproduction in Domestic Animals, 2018, 53, 814-817.	0.6	4
24	A high glucose concentration during early stages of in vitro equine embryo development alters expression of genes involved in glucose metabolism. Equine Veterinary Journal, 2021, 53, 787-795.	0.9	4
25	Electrically-driven handling of gametes and embryos: taking a step towards the future of ARTs. Lab on A Chip, 2022, 22, 1852-1875.	3.1	4
26	Simulations of osmotic events in vitrification of equine oocytes and porcine embryos. Cryobiology, 2018, 85, 154-155.	0.3	3
27	Intracellular localisation of platelet-activating factor during mammalian embryo development in vitro: a comparison of cattle, mouse and human. Reproduction, Fertility and Development, 2019, 31, 658.	0.1	0
28	42 Comparison of three permeating cryoprotectant mixtures for equine immature oocyte vitrification. Reproduction, Fertility and Development, 2022, 34, 256.	0.1	0
29	51 Genome-wide abnormalities resulting from heterogoneic cell division persist in the blastocyst-stage bovine embryo. Reproduction, Fertility and Development, 2022, 34, 260.	0.1	0
30	58 The embryotrophic effect of cathepsin-L in a bovine in vitro model. Reproduction, Fertility and Development, 2022, 34, 264.	0.1	0