
## Lucyna Firlej

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6321990/publications.pdf Version: 2024-02-01



LUCYNA FIDI FI

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | High-throughput screening of metal – Organic frameworks for CO2 and CH4 separation in the presence of water. Chemical Engineering Journal, 2021, 403, 126392.                                                             | 12.7 | 53        |
| 2  | Phonons and Adsorption-Induced Deformations in ZIFs: Is It Really a Gate Opening?. Journal of Physical Chemistry C, 2021, 125, 7999-8005.                                                                                 | 3.1  | 10        |
| 3  | Hydrogen Storage in Pure and Boron-Substituted Nanoporous Carbons-Numerical and Experimental Perspective. Nanomaterials, 2021, 11, .                                                                                      | 4.1  | 0         |
| 4  | Hydrogen Storage in Pure and Boron-Substituted Nanoporous Carbons—Numerical and Experimental<br>Perspective. Nanomaterials, 2021, 11, 2173.                                                                               | 4.1  | 3         |
| 5  | Effect of low frequency phonons on structural properties of ZIFs with SOD topology. Microporous and Mesoporous Materials, 2020, 304, 109132.                                                                              | 4.4  | 13        |
| 6  | How dense is the gas adsorbed in nanopores?. Microporous and Mesoporous Materials, 2020, 304, 109240.                                                                                                                     | 4.4  | 3         |
| 7  | Acetone-derived luminescent polymer dots: a facile and low-cost synthesis leads to remarkable photophysical properties. RSC Advances, 2020, 10, 38437-38445.                                                              | 3.6  | 7         |
| 8  | Pore opening and breathing transitions in metal-organic frameworks: Coupling adsorption and deformation. Journal of Colloid and Interface Science, 2020, 578, 77-88.                                                      | 9.4  | 20        |
| 9  | Self-Assembled Two-Dimensional Nanoporous Crystals as Molecular Sieves: Molecular Dynamics<br>Studies of 1,3,5-Tristyrilbenzene-Cn Superstructures. Journal of Chemical Information and Modeling,<br>2020, 60, 2155-2168. | 5.4  | 3         |
| 10 | Absorption of atomic and molecular species in carbon cellular structures (Review article). Low<br>Temperature Physics, 2020, 46, 219-231.                                                                                 | 0.6  | 5         |
| 11 | Intermediate states approach for adsorption studies in flexible metal–organic frameworks. Physical<br>Chemistry Chemical Physics, 2019, 21, 3294-3303.                                                                    | 2.8  | 13        |
| 12 | Phonons in deformable microporous crystalline solids. Zeitschrift Fur Kristallographie - Crystalline<br>Materials, 2019, 234, 513-527.                                                                                    | 0.8  | 7         |
| 13 | Computer modeling of 2D supramolecular nanoporous monolayers self-assembled on graphite.<br>Nanoscale, 2019, 11, 21284-21290.                                                                                             | 5.6  | 2         |
| 14 | Benchmarking of GGA density functionals for modeling structures of nanoporous, rigid and flexible<br>MOFs. Journal of Chemical Physics, 2018, 149, 064110.                                                                | 3.0  | 23        |
| 15 | Modeling of low temperature adsorption of hydrogen in carbon nanopores. Journal of Molecular<br>Modeling, 2017, 23, 20.                                                                                                   | 1.8  | 17        |
| 16 | Evolution of methane density during melting in nanopores. Journal of Molecular Modeling, 2017, 23,<br>44.                                                                                                                 | 1.8  | 2         |
| 17 | Simulation and Characterization of Tetracosane on Graphite: Molecular Dynamics Beyond the<br>Monolayer. Journal of Physical Chemistry C, 2016, 120, 984-994.                                                              | 3.1  | 7         |
| 18 | Hydrogen adsorption on surfaces with different binding energies. Chemical Data Collections, 2016, 2,<br>56-60.                                                                                                            | 2.3  | 3         |

LUCYNA FIRLEJ

| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Hydrogen storage by adsorption in porous materials: Is it possible?. Colloids and Surfaces A:<br>Physicochemical and Engineering Aspects, 2016, 496, 69-76.                       | 4.7  | 32        |
| 20 | Engineered Porous Carbon for High Volumetric Methane Storage. Adsorption Science and Technology, 2014, 32, 681-691.                                                               | 3.2  | 16        |
| 21 | Different Approach to Estimation of Hydrogen-Binding Energy in Nanospace-Engineered Activated<br>Carbons. Journal of Physical Chemistry C, 2014, 118, 955-961.                    | 3.1  | 7         |
| 22 | Unique Bonding Nature of Carbon-Substituted Be <sub>2</sub> Dimer inside the Carbon<br>(sp <sup>2</sup> ) Network. Journal of Physical Chemistry A, 2014, 118, 5727-5733.         | 2.5  | 9         |
| 23 | Open carbon frameworks - a search for optimal geometry for hydrogen storage. Journal of Molecular<br>Modeling, 2013, 19, 4079-4087.                                               | 1.8  | 15        |
| 24 | Understanding Universal Adsorption Limits for Hydrogen Storage in Nano Porous Systems. Advanced<br>Materials, 2013, 25, 5971-5974.                                                | 21.0 | 28        |
| 25 | Increased H2 gravimetric storage capacity in truncated carbon slit pores modeled by Grand Canonical<br>Monte Carlo. Carbon, 2013, 53, 208-215.                                    | 10.3 | 18        |
| 26 | Hypothetical High-Surface-Area Carbons with Exceptional Hydrogen Storage Capacities: Open Carbon<br>Frameworks. Journal of the American Chemical Society, 2012, 134, 15130-15137. | 13.7 | 66        |
| 27 | Nanospace engineering of KOH activated carbon. Nanotechnology, 2012, 23, 015401.                                                                                                  | 2.6  | 301       |
| 28 | Molecular simulations of intermediate and long alkanes adsorbed on graphite: Tuning of non-bond interactions. Journal of Molecular Modeling, 2011, 17, 811-816.                   | 1.8  | 10        |
| 29 | A review of boron enhanced nanoporous carbons for hydrogen adsorption: numerical perspective.<br>Adsorption, 2010, 16, 413-421.                                                   | 3.0  | 34        |
| 30 | Influence of structural heterogeneity of nanoporous sorbent walls on hydrogen storage. Applied<br>Surface Science, 2010, 256, 5270-5274.                                          | 6.1  | 14        |
| 31 | Structural and energetic factors in designing a nanoporous sorbent for hydrogen storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 357, 61-66.      | 4.7  | 27        |
| 32 | Numerical estimation of hydrogen storage limits in carbon-based nanospaces. Carbon, 2010, 48, 223-231.                                                                            | 10.3 | 59        |
| 33 | Molecular dynamics simulations of submonolayer hexane and pentane films on graphite. Molecular<br>Simulation, 2010, 36, 326-333.                                                  | 2.0  | 3         |
| 34 | Enhanced hydrogen adsorption in boron substituted carbon nanospaces. Journal of Chemical Physics, 2009, 131, 164702.                                                              | 3.0  | 50        |
| 35 | Boron substituted graphene: energy landscape for hydrogen adsorption. Adsorption, 2009, 15, 312-317.                                                                              | 3.0  | 41        |
| 36 | Melting of Hexane Monolayers Adsorbed on Graphite: The Role of Domains and Defect Formation.<br>Langmuir, 2009, 25, 6596-6598.                                                    | 3.5  | 13        |

LUCYNA FIRLEJ

| #  | Article                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Influence of quantum effects on the mechanism of adsorption andÂphase diagram of rare gases in<br>carbon nanotubes. Adsorption, 2008, 14, 719-726.                        | 3.0 | 3         |
| 38 | Influence of Strength of Atom-Wall Interactions on Adsorption Mechanism. Adsorption, 2005, 11, 367-372.                                                                   | 3.0 | 2         |
| 39 | Monte Carlo simulations of krypton adsorption in nanopores: Influence of pore-wall heterogeneity on the adsorption mechanism. Low Temperature Physics, 2003, 29, 880-882. | 0.6 | 20        |
| 40 | Title is missing!. Journal of Low Temperature Physics, 2001, 122, 171-177.                                                                                                | 1.4 | 8         |
| 41 | On the Character of Atomic Adlayers Physiadsorbed on an Incommensurate Substrate. Journal of Low<br>Temperature Physics, 2001, 122, 121-128.                              | 1.4 | 9         |
| 42 | Calculations on the stability of low temperature solid nitrogen phases. Journal of Chemical Physics, 2000, 112, 6745-6748.                                                | 3.0 | 5         |