
Raúl Pérez HernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6321811/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A theoretical catalytic mechanism for methanol reforming in CeO2 vs Ni/CeO2 by energy transition states profiles. Catalysis Today, 2022, 392-393, 146-153.	4.4	6
2	Catalytic Aspects of Pt/Pd Supported on ZnO Rods for Hydrogen Production in Methanol Steam Reforming. Topics in Catalysis, 2022, 65, 1556-1569.	2.8	5
3	One dimensional Pt/CeO2-NR catalysts for hydrogen production by steam reforming of methanol: Effect of Pt precursor. Catalysis Today, 2021, 360, 55-62.	4.4	29
4	Comparison of the sorption behavior of 99Mo by Ti-, Si-, Ti-Si-xerogels and commercial sorbents. Journal of Radioanalytical and Nuclear Chemistry, 2021, 328, 679-690.	1.5	1
5	Effect of the Oxygen Vacancies in CeO ₂ by the Ce ³⁺ Incorporation to Enhance the Photocatalytic Mineralization of Phenol. ChemistrySelect, 2021, 6, 3435-3443.	1.5	8
6	Reactivity of Pt/Ni supported on CeO2-nanorods on methanol steam reforming for H2 production: Steady state and DRIFTS studies. International Journal of Hydrogen Energy, 2021, 46, 25954-25964.	7.1	22
7	Synthetic gas production by dry reforming of methane over Ni/Al2O3–ZrO2 catalysts: High H2/CO ratio. International Journal of Hydrogen Energy, 2021, 46, 26224-26233.	7.1	22
8	Synthesis by the sol-gel method and characterization of Pt-promoted CuO/TiO2-ZrO2 catalysts for decomposition of 2-propanol. Catalysis Today, 2020, 349, 228-234.	4.4	14
9	Efficient ZnS–ZnO/ZnAl-LDH composite for H2 production by photocatalysis. Renewable Energy, 2020, 145, 124-132.	8.9	71
10	Methanolysis of Simarouba Glauca DC oil with hydrotalcite-type ZnCuAl catalysts. Catalysis Today, 2020, 349, 48-56.	4.4	5
11	Influence of W6+ cations on the photocatalytic activity of Zn2+Al3+W6+ layered double hydroxides in the degradation of diclofenac. Fuel, 2020, 280, 118621.	6.4	7
12	Pt–Ni/ZnO-rod catalysts for hydrogen production by steam reforming of methanol with oxygen. RSC Advances, 2020, 10, 41315-41323.	3.6	15
13	Preparation and characterization of the polycrystalline material Zn5(OH)6(CO3)2. Determination of the active species in oxide-reduction processes. Fuel, 2020, 281, 118471.	6.4	8
14	Bifunctional Pd eO ₂ Nanorods/C Nanocatalyst with High Electrochemical Stability and Catalytic Activity for the ORR and EOR in Alkaline Media. ChemistrySelect, 2020, 5, 14032-14040.	1.5	12
15	Photocatalytic Evaluation of the ZrO2:Zn5(OH)6(CO3)2 Composite for the H2 Production via Water Splitting. Topics in Catalysis, 2020, 63, 575-585.	2.8	8
16	Hydrogen production by ultrasound assisted liquid laser ablation of Al, Mg and Al-Mg alloys in water. Applied Surface Science, 2019, 478, 189-196.	6.1	26
17	Influence of ZnS wurtzite–sphalerite junctions on ZnOCore-ZnSShell-1D photocatalysts for H2 production. International Journal of Hydrogen Energy, 2019, 44, 10528-10540.	7.1	26
18	Highly Active Pd-CeO _{2-NR} /C (Cerium Oxide Nanorods) Bifunctional Nanocatalysts with Remarkable Stability for the Ethanol Oxidation and Oxygen Reduction Reactions in Alkaline Media. ECS Transactions, 2019, 92, 671-678.	0.5	5

#	Article	IF	CITATIONS
19	Hydrogen production by laser irradiation of metals in water under an ultrasonic field: A novel approach. International Journal of Hydrogen Energy, 2019, 44, 1579-1585.	7.1	15
20	Evaluation of the novel Pd CeO2-NR electrocatalyst supported on N-doped graphene for the Oxygen Reduction Reaction and its use in a Microbial Fuel Cell. Journal of Power Sources, 2019, 414, 103-114.	7.8	21
21	Synthesis and characterization of ZnZr composites for the photocatalytic degradation of phenolic molecules: addition effect of ZrO ₂ over hydrozincite Zn ₅ (OH) ₆ (CO ₃) ₂ . Journal of Chemical Technology and Biotechnology. 2019. 94. 3428-3439.	3.2	15
22	High performance of the novel Pd CeO2-NR/C (cerium oxide nanorods) nanocatalyst for the oxidation of C1, C2 and C3 organic molecules for fuel cells applications. International Journal of Hydrogen Energy, 2019, 44, 12415-12420.	7.1	13
23	Catalytic Ni/CeO2 Nanorods and Ag/CeO2 Nanotubes for Hydrogen Production by Methanol Reforming. , 2019, , 167-190.		0
24	Photocatalytic activity of Ag/Al ₂ O ₃ –Gd ₂ O ₃ photocatalysts prepared by the sol–gel method in the degradation of 4-chlorophenol. RSC Advances, 2018, 8, 3108-3119.	3.6	61
25	ZnO thin films as propane sensors: Band structure models to explicate the dependence between the structural and morphological properties on gas sensitivity. Journal of Physics and Chemistry of Solids, 2017, 106, 16-28.	4.0	6
26	Promotion effect of ZnO on the photocatalytic activity of coupled Al 2 O 3 -Nd 2 O 3 -ZnO composites prepared by the sol â^' gel method in the degradation of phenol. Applied Catalysis B: Environmental, 2017, 208, 161-170.	20.2	44
27	Efficient ZnO1-xSx composites from the Zn5(CO3)2(OH)6 precursor for the H2 production by photocatalysis. Renewable Energy, 2017, 113, 43-51.	8.9	17
28	Photocatalytic activity of Al2O3 improved by the addition of Ce3+/Ce4+ synthesized by the sol-gel method. Photodegradation of phenolic compounds using UV light. Fuel, 2017, 198, 11-21.	6.4	53
29	Novel preparation of ZnS from Zn5(CO3)2(OH)6 by the hydro- or solvothermal method for H2 production. Catalysis Today, 2017, 287, 91-98.	4.4	21
30	Enhanced catalytic activity of supported nanostructured Pd for the oxidation of organic molecules using Î ³ -Fe2O3 and Fe3O4 as co-electrocatalysts. International Journal of Hydrogen Energy, 2017, 42, 30301-30309.	7.1	13
31	High Performance Pd-CeO _{2-NR} Supported on Graphene and N-Doped Graphene for the ORR and Its Application in a Microbial Fuel Cell. ECS Transactions, 2017, 77, 1359-1365.	0.5	12
32	Photocatalytic properties of boehmite–SnO2 composites for the degradation of phenol. Catalysis Today, 2016, 266, 82-89.	4.4	22
33	Improved photocatalytic activity of SnO2–ZnAl LDH prepared by one step Sn4+ incorporation. Applied Clay Science, 2016, 121-122, 127-136.	5.2	71
34	Effect of the bimetallic Ni/Cu loading on the ZrO2 support for H2 production in the autothermal steam reforming of methanol. Catalysis Today, 2015, 250, 166-172.	4.4	53
35	Ag nanowires as precursors to synthesize Ag–ZnO nanostructured brushes. RSC Advances, 2015, 5, 42568-42571.	3.6	5
36	Carbon dioxide capture utilizing zeolites synthesized with paper sludge and scrap-glass. Waste Management and Research, 2014, 32, 1219-1226.	3.9	14

RaÃ⁰l Pérez HernÃindez

#	Article	IF	CITATIONS
37	Thermoluminescence response induced by UV radiation in Eu-doped zirconia nanopowders. Radiation Physics and Chemistry, 2014, 97, 118-125.	2.8	13
38	Nano-dimensional CeO2 nanorods for high Ni loading catalysts: H2 production by autothermal steam reforming of methanol reaction. Physical Chemistry Chemical Physics, 2013, 15, 12702.	2.8	50
39	Ag nanowires as precursors to synthesize novel Ag-CeO2 nanotubes for H2 production by methanol reforming. Catalysis Today, 2013, 212, 225-231.	4.4	19
40	ZrO2 Nanopowders Doped with Eu: SEM, XRD and UV Spectroscopy Studies. Materials Research Society Symposia Proceedings, 2012, 1371, 39.	0.1	0
41	Catalytic Steam Reforming of Methanol to Produce Hydrogen on Supported Metal Catalysts. , 2012, , .		5
42	Hydrogen production from oxidative steam reforming of methanol: Effect of the Cu and Ni impregnation on ZrO2 and their molecular simulation studies. International Journal of Hydrogen Energy, 2012, 37, 9018-9027.	7.1	58
43	A novel synthesis method to produce silver-doped CeO2 nanotubes based on Ag nanowire templates. Physical Chemistry Chemical Physics, 2011, 13, 16756.	2.8	21
44	Catalytic activity of poly[(methacrylato)aluminum(III)] obtained at different gamma-radiation doses. Radiation Physics and Chemistry, 2011, 80, 1151-1157.	2.8	4
45	Hydrogen Production by Methanol Steam Reforming Over Pd/ZrO2–TiO2 Catalysts. Topics in Catalysis, 2011, 54, 572-578.	2.8	35
46	Hydrogen production by oxidative steam reforming of methanol over Ni/CeO2–ZrO2 catalysts. International Journal of Hydrogen Energy, 2011, 36, 6601-6608.	7.1	56
47	Low-Temperature Synthesis and Growth Mechanism of ZnO Nanorods on Crystalline Si Substrate. Journal of Nano Research, 2011, 14, 69-82.	0.8	8
48	Hydrogen Production by Steam Reforming of Methanol over New Ag-Au(1-D)-CeO2 Catalyst. Materials Research Society Symposia Proceedings, 2010, 1279, 1.	0.1	1
49	Synthesis of silica–silver wires by a sol–gel technique. Solid State Sciences, 2009, 11, 1722-1729.	3.2	9
50	Synthesis of mixed ZrO2–TiO2 oxides by sol–gel: Microstructural characterization and infrared spectroscopy studies of NOx. Journal of Molecular Catalysis A, 2008, 281, 200-206.	4.8	66
51	Synthesis and characterization of bimetallic Cu–Ni/ZrO2 nanocatalysts: H2 production by oxidative steam reforming of methanol. International Journal of Hydrogen Energy, 2008, 33, 4569-4576.	7.1	95
52	Oxidative steam reforming of methanol for hydrogen production over Cu/CeO2-ZrO2catalysts. Energy Materials, 2008, 3, 152-157.	0.1	15
53	Ag nanoparticle effects on the thermoluminescent properties of monoclinic ZrO2exposed to ultraviolet and gamma radiation. Nanotechnology, 2007, 18, 265703.	2.6	22
54	Effect of Cu loading on CeO2CeO2 for hydrogen production by oxidative steam reforming of methanol. International Journal of Hydrogen Energy, 2007, 32, 2888-2894.	7.1	67

#	Article	IF	CITATIONS
55	Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature. Materials Letters, 2007, 61, 4447-4451.	2.6	228
56	SCR of NO by CH4 on Pt/ZrO2–TiO2 sol–gel catalysts. Catalysis Today, 2005, 107-108, 149-156.	4.4	36
57	NO reduction with CH4 or CO on Pt/ZrO2–CeO2 catalysts. Catalysis Today, 2005, 107-108, 175-180.	4.4	43
58	Microstructural study of asphaltene precipitated with methylene chloride and n-hexaneâ~†. Fuel, 2003, 82, 977-982.	6.4	70
59	Support effects in Pt/TiO2–ZrO2 catalysts for NO reduction with CH4. Catalysis Today, 2002, 75, 385-391.	4.4	20
60	CuO–SiO2 Sol–Gel Catalysts: Characterization and Catalytic Properties for NO Reduction. Journal of Catalysis, 1999, 187, 1-14.	6.2	89
61	Hydrogen Production by Steam Reforming of Methanol over a Ag/ZnO One Dimensional Catalyst. Advanced Materials Research, 0, 132, 205-219.	0.3	27