Deepti Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/632157/publications.pdf Version: 2024-02-01

DEEDTI SINCH

#	Article	IF	CITATIONS
1	Letter to the editor: Virtual reality in surgical training. International Journal of Surgery, 2021, 89, 105935.	2.7	0
2	3D printing cross-linkable calcium phosphate biocomposites for biocompatible surgical implantation. Bioprinting, 2021, 22, e00141.	5.8	2
3	Partially Differentiated Neuroretinal Cells Promote Maturation of the Retinal Pigment Epithelium. , 2020, 61, 9.		7
4	Unstimulated, Serum-free Cultures of Retinal Pigment Epithelium Excrete Large Mounds of Drusen-like Deposits. Current Eye Research, 2020, 45, 1390-1394.	1.5	8
5	Injectable gelatin hydroxyphenyl propionic acid hydrogel protects human retinal progenitor cells (hRPCs) from shear stress applied during small-bore needle injection. Applied Materials Today, 2020, 19, 100602.	4.3	14
6	Disease-associated mutations of claudin-19 disrupt retinal neurogenesis and visual function. Communications Biology, 2019, 2, 113.	4.4	20
7	Interpenetrating alginate on gelatin–poly(2-hydroxyethyl methacrylate) as a functional polymeric matrix for cartilage tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 551-563.	3.4	5
8	Neferine, is not inducer but blocker for macroautophagic flux targeting on lysosome malfunction. Biochemical and Biophysical Research Communications, 2018, 495, 1516-1521.	2.1	8
9	A biodegradable scaffold enhances differentiation of embryonic stem cells into a thick sheet of retinal cells. Biomaterials, 2018, 154, 158-168.	11.4	50
10	3D printing in surgery – The evolving paradigm-shift in surgical implants on demand. International Journal of Surgery, 2017, 42, 58-59.	2.7	5
11	3D-printing for engineering the next generation of artificial trabecular bone structures. International Journal of Surgery, 2017, 46, 195-197.	2.7	3
12	3D Printing of Scaffold for Cells Delivery: Advances in Skin Tissue Engineering. Polymers, 2016, 8, 19.	4.5	85
13	Claudin-3 and claudin-19 partially restore native phenotype to ARPE-19Âcells via effects on tight junctions and gene expression. Experimental Eye Research, 2016, 151, 179-189.	2.6	31
14	Enhanced cell viability of hydroxyapatite nanowires by surfactant mediated synthesis and its growth mechanism. RSC Advances, 2016, 6, 25070-25081.	3.6	28
15	Effect of Extracts of <i>Terminalia chebula</i> on Proliferation of Keratinocytes and Fibroblasts Cells: An Alternative Approach for Wound Healing. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-13.	1.2	36
16	Novel Alginate-Gelatin Hybrid Nanoparticle for Drug Delivery and Tissue Engineering Applications. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	11
17	Nano-Biomimetics for Nano/Micro Tissue Regeneration. Journal of Biomedical Nanotechnology, 2014, 10, 3141-3161.	1.1	31
18	Polysaccharides as Nanocarriers for Therapeutic Applications. Journal of Biomedical Nanotechnology, 2014, 10, 2149-2172.	1.1	22

DEEPTI SINGH

6.4

68

#	Article	IF	CITATIONS
19	Synthesis of composite gelatin-hyaluronic acid-alginate porous scaffold and evaluation for in vitro stem cell growth and in vivo tissue integration. Colloids and Surfaces B: Biointerfaces, 2014, 116, 502-509.	5.0	56
20	Fabrication of cellulose-based scaffold with microarchitecture using a leaching technique for biomedical applications. Cellulose, 2014, 21, 3515-3525.	4.9	37
21	Surfactant Role in Modifying Architecture of Functional Polymeric Gelatin Scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 951-956.	3.4	7
22	Three-dimensional porous HPMA-co-DMAEM hydrogels for biomedical application. Colloid and Polymer Science, 2013, 291, 1121-1133.	2.1	10
23	Porous Three-Dimensional PVA/Gelatin Sponge for Skin Tissue Engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 384-389.	3.4	76
24	Functionalizing cellulose scaffold prepared by ionic liquid with bovine serum albumin for biomedical application. Fibers and Polymers, 2013, 14, 1965-1969.	2.1	4
25	Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1343-1359.	3.5	43
26	Enhanced Proliferation and Growth of Human Lung Epithelial Cells on Gelatin Microparticle Loaded withEphedraExtracts. Journal of Nanomaterials, 2013, 2013, 1-8.	2.7	7
27	Effect of Alpha-Ketoglutarate on Growth and Metabolism of Cells Cultured on Three-Dimensional Cryogel Matrix. International Journal of Biological Sciences, 2013, 9, 521-530.	6.4	13
28	Fabrication of Three dimensional porous matrix and bone tissue regeneration. FASEB Journal, 2013, 27, 1217.3.	0.5	0
29	Proliferation of Chondrocytes on a 3-D Modelled Macroporous Poly(Hydroxyethyl) Tj ETQq1 1 0.784314 rgBT /Ov	verlock 10	Tf 50 342 To

Proliferation of Myoblast Skeletal Cells on Three-Dimensional Supermacroporous Cryogels. International Journal of Biological Sciences, 2010, 6, 371-381.