Deepti Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/632157/publications.pdf

Version: 2024-02-01

20	720	623734 1 / 1	526287 2.7
30	728	14	27
papers	citations	h-index	g-index
20	20	20	1240
30	30	30	1348
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	3D Printing of Scaffold for Cells Delivery: Advances in Skin Tissue Engineering. Polymers, 2016, 8, 19.	4.5	85
2	Porous Three-Dimensional PVA/Gelatin Sponge for Skin Tissue Engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 384-389.	3.4	76
3	Proliferation of Myoblast Skeletal Cells on Three-Dimensional Supermacroporous Cryogels. International Journal of Biological Sciences, 2010, 6, 371-381.	6.4	68
4	Synthesis of composite gelatin-hyaluronic acid-alginate porous scaffold and evaluation for in vitro stem cell growth and in vivo tissue integration. Colloids and Surfaces B: Biointerfaces, 2014, 116, 502-509.	5.0	56
5	A biodegradable scaffold enhances differentiation of embryonic stem cells into a thick sheet of retinal cells. Biomaterials, 2018, 154, 158-168.	11.4	50
6	Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1343-1359.	3.5	43
7	Proliferation of Chondrocytes on a 3-D Modelled Macroporous Poly(Hydroxyethyl) Tj ETQq1 1 0.784314 rgBT /Ov	verlock 10	Tf 50 502 Td
8	Fabrication of cellulose-based scaffold with microarchitecture using a leaching technique for biomedical applications. Cellulose, 2014, 21, 3515-3525.	4.9	37
9	Effect of Extracts of <i>Terminalia chebula </i> on Proliferation of Keratinocytes and Fibroblasts Cells: An Alternative Approach for Wound Healing. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-13.	1.2	36
10	Nano-Biomimetics for Nano/Micro Tissue Regeneration. Journal of Biomedical Nanotechnology, 2014, 10, 3141-3161.	1.1	31
11	Claudin-3 and claudin-19 partially restore native phenotype to ARPE-19Âcells via effects on tight junctions and gene expression. Experimental Eye Research, 2016, 151, 179-189.	2.6	31
12	Enhanced cell viability of hydroxyapatite nanowires by surfactant mediated synthesis and its growth mechanism. RSC Advances, 2016, 6, 25070-25081.	3.6	28
13	Polysaccharides as Nanocarriers for Therapeutic Applications. Journal of Biomedical Nanotechnology, 2014, 10, 2149-2172.	1.1	22
14	Disease-associated mutations of claudin-19 disrupt retinal neurogenesis and visual function. Communications Biology, 2019, 2, 113.	4.4	20
15	Injectable gelatin hydroxyphenyl propionic acid hydrogel protects human retinal progenitor cells (hRPCs) from shear stress applied during small-bore needle injection. Applied Materials Today, 2020, 19, 100602.	4.3	14
16	Effect of Alpha-Ketoglutarate on Growth and Metabolism of Cells Cultured on Three-Dimensional Cryogel Matrix. International Journal of Biological Sciences, 2013, 9, 521-530.	6.4	13
17	Novel Alginate-Gelatin Hybrid Nanoparticle for Drug Delivery and Tissue Engineering Applications. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	11
18	Three-dimensional porous HPMA-co-DMAEM hydrogels for biomedical application. Colloid and Polymer Science, 2013, 291, 1121-1133.	2.1	10

#	Article	IF	CITATIONS
19	Neferine, is not inducer but blocker for macroautophagic flux targeting on lysosome malfunction. Biochemical and Biophysical Research Communications, 2018, 495, 1516-1521.	2.1	8
20	Unstimulated, Serum-free Cultures of Retinal Pigment Epithelium Excrete Large Mounds of Drusen-like Deposits. Current Eye Research, 2020, 45, 1390-1394.	1.5	8
21	Enhanced Proliferation and Growth of Human Lung Epithelial Cells on Gelatin Microparticle Loaded withEphedraExtracts. Journal of Nanomaterials, 2013, 2013, 1-8.	2.7	7
22	Surfactant Role in Modifying Architecture of Functional Polymeric Gelatin Scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 951-956.	3.4	7
23	Partially Differentiated Neuroretinal Cells Promote Maturation of the Retinal Pigment Epithelium. , 2020, 61, 9.		7
24	3D printing in surgery – The evolving paradigm-shift in surgical implants on demand. International Journal of Surgery, 2017, 42, 58-59.	2.7	5
25	Interpenetrating alginate on gelatin–poly(2-hydroxyethyl methacrylate) as a functional polymeric matrix for cartilage tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 551-563.	3.4	5
26	Functionalizing cellulose scaffold prepared by ionic liquid with bovine serum albumin for biomedical application. Fibers and Polymers, 2013, 14, 1965-1969.	2.1	4
27	3D-printing for engineering the next generation of artificial trabecular bone structures. International Journal of Surgery, 2017, 46, 195-197.	2.7	3
28	3D printing cross-linkable calcium phosphate biocomposites for biocompatible surgical implantation. Bioprinting, 2021, 22, e00141.	5.8	2
29	Letter to the editor: Virtual reality in surgical training. International Journal of Surgery, 2021, 89, 105935.	2.7	0
30	Fabrication of Three dimensional porous matrix and bone tissue regeneration. FASEB Journal, 2013, 27, 1217.3.	0.5	0