List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6321559/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	T cell apoptosis characterizes severe Covid-19 disease. Cell Death and Differentiation, 2022, 29, 1486-1499.	5.0	90
2	Multiple facets and functions of the toxin mycolactone produced by Mycobacterium ulcerans. , 2022, , 271-290.		0
3	Purification and Characterization of a Thrombolytic Enzyme Produced by a New Strain of <i>Bacillus subtil</i> . Journal of Microbiology and Biotechnology, 2021, 31, 327-337.	0.9	6
4	Interleukin-6 Is a Biomarker for the Development of Fatal Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia. Frontiers in Immunology, 2021, 12, 613422.	2.2	228
5	Genetics in the Host―Mycobacterium ulcerans interaction. Immunological Reviews, 2021, 301, 222-241.	2.8	0
6	Genetic variants in human BCL2L11 (BIM) are associated with ulcerative forms of Buruli ulcer. Emerging Microbes and Infections, 2021, 10, 223-225.	3.0	4
7	Individual and clinical variables associated with the risk of Buruli ulcer acquisition: AÂsystematic review and meta-analysis. PLoS Neglected Tropical Diseases, 2020, 14, e0008161.	1.3	4
8	Antimicrobial activity of Mycobacteriophage D29 Lysin B during Mycobacterium ulcerans infection. PLoS Neglected Tropical Diseases, 2019, 13, e0007113.	1.3	25
9	Increasing the potential of cell-penetrating peptides for cancer therapy using a new pentagonal scaffold. European Journal of Pharmacology, 2019, 860, 172554.	1.7	7
10	K2 Capsule Depolymerase Is Highly Stable, Is Refractory to Resistance, and Protects Larvae and Mice from Acinetobacter baumannii Sepsis. Applied and Environmental Microbiology, 2019, 85, .	1.4	38
11	The Immunology of Buruli Ulcer. , 2019, , 135-158.		3
12	Exploring inhalable polymeric dry powders for anti-tuberculosis drug delivery. Materials Science and Engineering C, 2018, 93, 1090-1103.	3.8	23
13	Development of Inhalable Superparamagnetic Iron Oxide Nanoparticles (SPIONs) in Microparticulate System for Antituberculosis Drug Delivery. Advanced Healthcare Materials, 2018, 7, e1800124.	3.9	34
14	Immune-evasion Strategies of Mycobacteria and Their Implications for the Protective Immune Response. Current Issues in Molecular Biology, 2018, 25, 169-198.	1.0	12
15	Natural based eumelanin nanoparticles functionalization and preliminary evaluation as carrier for gentamicin. Reactive and Functional Polymers, 2017, 114, 38-48.	2.0	16
16	Preparation and biological evaluation of ethionamide-mesoporous silicon nanoparticles against Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 403-405.	1.0	11
17	Delivery of LLKKK18 loaded into self-assembling hyaluronic acid nanogel for tuberculosis treatment. Journal of Controlled Release, 2016, 235, 112-124.	4.8	80
18	Genetic Variation in Autophagy-Related Genes Influences the Risk and Phenotype of Buruli Ulcer. PLoS Neglected Tropical Diseases, 2016, 10, e0004671.	1.3	35

#	Article	IF	CITATIONS
19	IL-17A Promotes Intracellular Growth of Mycobacterium by Inhibiting Apoptosis of Infected Macrophages. Frontiers in Immunology, 2015, 6, 498.	2.2	28
20	Clinical Epidemiology of Buruli Ulcer from Benin (2005-2013): Effect of Time-Delay to Diagnosis on Clinical Forms and Severe Phenotypes. PLoS Neglected Tropical Diseases, 2015, 9, e0004005.	1.3	23
21	Spontaneous Healing of Mycobacterium ulcerans Lesions in the Guinea Pig Model. PLoS Neglected Tropical Diseases, 2015, 9, e0004265.	1.3	18
22	Detecting Antibody-Labeled BCG MNPs Using a Magnetoresistive Biosensor and Magnetic Labeling Technique. Journal of Nano Research, 2015, 35, 92-103.	0.8	1
23	Analysis of a Local HIV-1 Epidemic in Portugal Highlights Established Transmission of Non-B and Non-G Subtypes. Journal of Clinical Microbiology, 2015, 53, 1506-1514.	1.8	26
24	BCG vaccination-induced long-lasting control of Mycobacterium tuberculosis correlates with the accumulation of a novel population of CD4+IL-17+TNF+IL-2+ T cells. Vaccine, 2015, 33, 85-91.	1.7	42
25	Proteomic Analysis of the Action of the Mycobacterium ulcerans Toxin Mycolactone: Targeting Host Cells Cytoskeleton and Collagen. PLoS Neglected Tropical Diseases, 2014, 8, e3066.	1.3	27
26	Differential postâ€transcriptional regulation of <scp>IL</scp> â€10 by <scp>TLR</scp> 2 and <scp>TLR</scp> 4â€activated macrophages. European Journal of Immunology, 2014, 44, 856-866.	1.6	42
27	TLR9 Activation Dampens the Early Inflammatory Response to Paracoccidioides brasiliensis, Impacting Host Survival. PLoS Neglected Tropical Diseases, 2013, 7, e2317.	1.3	18
28	Phage Therapy Is Effective against Infection by Mycobacterium ulcerans in a Murine Footpad Model. PLoS Neglected Tropical Diseases, 2013, 7, e2183.	1.3	91
29	Update on the challenging role of biofilms in peritoneal dialysis. Biofouling, 2013, 29, 1015-1027.	0.8	24
30	Evidence for Diversifying Selection in a Set of Mycobacterium tuberculosis Genes in Response to Antibiotic- and Nonantibiotic-Related Pressure. Molecular Biology and Evolution, 2013, 30, 1326-1336.	3.5	43
31	Mycobacterium tuberculosis Strains Are Differentially Recognized by TLRs with an Impact on the Immune Response. PLoS ONE, 2013, 8, e67277.	1.1	76
32	P. brasiliensis Virulence Is Affected by SconC, the Negative Regulator of Inorganic Sulfur Assimilation. PLoS ONE, 2013, 8, e74725.	1.1	15
33	Corticosteroid-Induced Immunosuppression Ultimately Does Not Compromise the Efficacy of Antibiotherapy in Murine Mycobacterium ulcerans Infection. PLoS Neglected Tropical Diseases, 2012, 6, e1925.	1.3	13
34	The rs5743836 polymorphism in TLR9 confers a population-based increased risk of non-Hodgkin lymphoma. Genes and Immunity, 2012, 13, 197-201.	2.2	35
35	Local and Regional Re-Establishment of Cellular Immunity during Curative Antibiotherapy of Murine Mycobacterium ulcerans Infection. PLoS ONE, 2012, 7, e32740.	1.1	21
36	Cellular Immunity Confers Transient Protection in Experimental Buruli Ulcer following BCG or Mycolactone-Negative Mycobacterium ulcerans Vaccination. PLoS ONE, 2012, 7, e33406.	1.1	38

#	Article	IF	CITATIONS
37	TLR2 deficiency by compromising p19 (IL-23) expression limits Th 17 cell responses to Mycobacterium tuberculosis. International Immunology, 2011, 23, 89-96.	1.8	28
38	<i>Mycobacterium ulcerans</i> Triggers T-Cell Immunity followed by Local and Regional but Not Systemic Immunosuppression. Infection and Immunity, 2011, 79, 421-430.	1.0	41
39	The C Allele of rs5743836 Polymorphism in the Human TLR9 Promoter Links IL-6 and TLR9 Up-Regulation and Confers Increased B-Cell Proliferation. PLoS ONE, 2011, 6, e28256.	1.1	37
40	The selective COX-2 inhibitor Etoricoxib reduces acute inflammatory markers in a model of neurogenic laryngitis but loses its efficacy with prolonged treatment. Inflammation Research, 2010, 59, 743-753.	1.6	8
41	Dextrin nanoparticles: Studies on the interaction with murine macrophages and blood clearance. Colloids and Surfaces B: Biointerfaces, 2010, 75, 483-489.	2.5	47
42	IFN-γ–Dependent Activation of Macrophages during Experimental Infections by <i>Mycobacterium ulcerans</i> Is Impaired by the Toxin Mycolactone. Journal of Immunology, 2010, 184, 947-955.	0.4	50
43	Response to Treatment in a Prospective Cohort of Patients with Large Ulcerated Lesions Suspected to Be Buruli Ulcer (Mycobacterium ulcerans Disease). PLoS Neglected Tropical Diseases, 2010, 4, e736.	1.3	53
44	Virulence Attenuation of Candida albicans Genetic Variants Isolated from a Patient with a Recurrent Bloodstream Infection. PLoS ONE, 2010, 5, e10155.	1.1	22
45	Pathological role of interleukin 17 in mice subjected to repeated BCG vaccination after infection with <i>Mycobacterium tuberculosis</i> . Journal of Experimental Medicine, 2010, 207, 1609-1616.	4.2	230
46	Influenza Infectious Dose May Explain the High Mortality of the Second and Third Wave of 1918–1919 Influenza Pandemic. PLoS ONE, 2010, 5, e11655.	1.1	59
47	Fine-Needle Aspiration, an Efficient Sampling Technique for Bacteriological Diagnosis of Nonulcerative Buruli Ulcer. Journal of Clinical Microbiology, 2009, 47, 1700-1704.	1.8	58
48	Buruli ulcer disease: prospects for a vaccine. Medical Microbiology and Immunology, 2009, 198, 69-77.	2.6	42
49	Pathogenetic mechanisms of the intracellular parasite Mycobacterium ulcerans leading to Buruli ulcer. Lancet Infectious Diseases, The, 2009, 9, 699-710.	4.6	85
50	A New Model of Laryngitis: Neuropeptide, Cyclooxygenase, and Cytokine Profile. Laryngoscope, 2008, 118, 78-86.	1.1	13
51	Induction and expression of protective T cells during Mycobacterium avium infections in mice. Clinical and Experimental Immunology, 2008, 87, 379-385.	1.1	24
52	Characterization of the virulence of <i>Mycobacterium avium</i> complex (MAC) isolates in mice. Clinical and Experimental Immunology, 2008, 98, 210-216.	1.1	81
53	IL-10 modulates depressive-like behavior. Journal of Psychiatric Research, 2008, 43, 89-97.	1.5	121
54	Rifabutin encapsulated in liposomes exhibits increased therapeutic activity in a model of disseminated tuberculosis. International Journal of Antimicrobial Agents, 2008, 31, 37-45.	1.1	85

#	Article	IF	CITATIONS
55	New Foci of Buruli Ulcer, Angola and Democratic Republic of Congo. Emerging Infectious Diseases, 2008, 14, 1790-1792.	2.0	17
56	Developments on Drug Delivery Systems for the Treatment of Mycobacterial Infections. Current Topics in Medicinal Chemistry, 2008, 8, 579-591.	1.0	45
57	First Cultivation and Characterization of Mycobacterium ulcerans from the Environment. PLoS Neglected Tropical Diseases, 2008, 2, e178.	1.3	175
58	Mycolactone-Mediated Inhibition of Tumor Necrosis Factor Production by Macrophages Infected with Mycobacterium ulcerans Has Implications for the Control of Infection. Infection and Immunity, 2007, 75, 3979-3988.	1.0	88
59	Aquatic Insects and Mycobacterium ulcerans: An Association Relevant to Buruli Ulcer Control?. PLoS Medicine, 2007, 4, e63.	3.9	37
60	Evidence for an Intramacrophage Growth Phase of Mycobacterium ulcerans. Infection and Immunity, 2007, 75, 977-987.	1.0	91
61	Cutting Edge: IFN-Î ³ Regulates the Induction and Expansion of IL-17-Producing CD4 T Cells during Mycobacterial Infection. Journal of Immunology, 2006, 177, 1416-1420.	0.4	249
62	Infection with Mycobacterium ulcerans Induces Persistent Inflammatory Responses in Mice. Infection and Immunity, 2005, 73, 6299-6310.	1.0	92
63	Therapeutic Efficacy of Liposomal Rifabutin in a Mycobacterium avium Model of Infection. Antimicrobial Agents and Chemotherapy, 2000, 44, 2424-2430.	1.4	37
64	Differences in Resistance of C57BL/6 and C57BL/10 Mice to Infection by <i>Mycobacterium avium</i> Are Independent of Gamma Interferon. Infection and Immunity, 2000, 68, 19-23.	1.0	12
65	Neutrophils Play a Protective Nonphagocytic Role in Systemic Mycobacterium tuberculosis Infection of Mice. Infection and Immunity, 2000, 68, 577-583.	1.0	259
66	Effects of iron deprivation on Mycobacterium avium growth. Tubercle and Lung Disease, 1999, 79, 321-328.	2.1	40
67	Cytokines Involved in Resistance to <i>Mycobacterium avium</i> in a Mouse Model of Infection. Medical Principles and Practice, 1997, 6, 97-102.	1.1	1
68	Susceptibility of beige mice to Mycobacterium avium: role of neutrophils. Infection and Immunity, 1995, 63, 3381-3387.	1.0	100
69	Role of gamma interferon and tumor necrosis factor alpha during T-cell-independent and -dependent phases of Mycobacterium avium infection. Infection and Immunity, 1994, 62, 3962-3971.	1.0	194
70	Detecting Antibody-Labeled BCG MNPs Using a Magnetoresistive Biosensor and Magnetic Labeling Technique. Journal of Nano Research, 0, 34, 49-60.	0.8	7