
Surajit Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6321270/publications.pdf Version: 2024-02-01

SUDAUT CHOSH

#	Article	IF	CITATIONS
1	Assembly of an Injectable Noncytotoxic Peptide-Based Hydrogelator for Sustained Release of Drugs. Langmuir, 2014, 30, 929-936.	1.6	143
2	Bioinspired Design of Nanocages by Self-Assembling Triskelion Peptide Elements. Angewandte Chemie - International Edition, 2007, 46, 2002-2004.	7.2	133
3	Amphiphilic Peptide-Based Supramolecular, Noncytotoxic, Stimuli-Responsive Hydrogels with Antibacterial Activity. Biomacromolecules, 2017, 18, 3621-3629.	2.6	127
4	Neurological Insights of COVID-19 Pandemic. ACS Chemical Neuroscience, 2020, 11, 1206-1209.	1.7	126
5	Peptide based hydrogels for cancer drug release: modulation of stiffness, drug release and proteolytic stability of hydrogels by incorporating <scp>d</scp> -amino acid residue(s). Chemical Communications, 2016, 52, 5045-5048.	2.2	106
6	Indolicidin Targets Duplex DNA: Structural and Mechanistic Insight through a Combination of Spectroscopy and Microscopy. ChemMedChem, 2014, 9, 2052-2058.	1.6	75
7	Biodegradable Neuro-Compatible Peptide Hydrogel Promotes Neurite Outgrowth, Shows Significant Neuroprotection, and Delivers Anti-Alzheimer Drug. ACS Applied Materials & Interfaces, 2017, 9, 5067-5076.	4.0	57
8	Self-assembly and potassium ion triggered disruption of peptide-based soft structures. Chemical Communications, 2007, , 2296.	2.2	51
9	Excited State Proton Transfer in the Lysosome of Live Lung Cells: Normal and Cancer Cells. Journal of Physical Chemistry B, 2015, 119, 2149-2156.	1.2	44
10	Cancer Cell Imaging Using in Situ Generated Gold Nanoclusters. ChemPhysChem, 2016, 17, 61-68.	1.0	39
11	Biocompatible Lipopeptide-Based Antibacterial Hydrogel. Biomacromolecules, 2019, 20, 1889-1898.	2.6	38
12	Apoferritin Nanocage Delivers Combination of Microtubule and Nucleus Targeting Anticancer Drugs. ACS Applied Materials & Interfaces, 2016, 8, 30824-30832.	4.0	36
13	Spatial Position Regulates Power of Tryptophan: Discovery of a Major-Groove-Specific Nuclear-Localizing, Cell-Penetrating Tetrapeptide. Journal of the American Chemical Society, 2018, 140, 1697-1714.	6.6	36
14	Recent trends in the development of peptide and protein-based hydrogel therapeutics for the healing of CNS injury. Soft Matter, 2020, 16, 10046-10064.	1.2	35
15	An overview of key potential therapeutic strategies for combat in the COVID-19 battle. RSC Advances, 2020, 10, 28243-28266.	1.7	34
16	Confocal microscopy of cytoplasmic lipid droplets in a live cancer cell: number, polarity, diffusion and solvation dynamics. MedChemComm, 2014, 5, 536.	3.5	33
17	Selective Killing of Breast Cancer Cells by Doxorubicin‣oaded Fluorescent Gold Nanoclusters: Confocal Microscopy and FRET. ChemPhysChem, 2016, 17, 253-259.	1.0	32
18	Cell-Derived Exosome Therapy: A Novel Approach to Treat Post-traumatic Brain Injury Mediated Neural Injury. ACS Chemical Neuroscience, 2020, 11, 2045-2047.	1.7	32

#	Article	IF	CITATIONS
19	Organization of Motor Proteins into Functional Micropatterns Fabricated by a Photoinduced Fenton Reaction. Angewandte Chemie - International Edition, 2009, 48, 9188-9191.	7.2	30
20	Peptide-Based Acetylcholinesterase Inhibitor Crosses the Blood-Brain Barrier and Promotes Neuroprotection. ACS Chemical Neuroscience, 2018, 9, 2838-2848.	1.7	30
21	Neuro-Regenerative Choline-Functionalized Injectable Graphene Oxide Hydrogel Repairs Focal Brain Injury. ACS Chemical Neuroscience, 2019, 10, 1535-1543.	1.7	29
22	Novel Hexapeptide Interacts with Tubulin and Microtubules, Inhibits AÎ ² Fibrillation, and Shows Significant Neuroprotection. ACS Chemical Neuroscience, 2015, 6, 1309-1316.	1.7	27
23	Extracellular Matrix (ECM)-Mimicking Neuroprotective Injectable Sulfo-Functionalized Peptide Hydrogel for Repairing Brain Injury. ACS Biomaterials Science and Engineering, 2020, 6, 2287-2296.	2.6	27
24	α-Cyclodextrin Interacts Close to Vinblastine Site of Tubulin and Delivers Curcumin Preferentially to the Tubulin Surface of Cancer Cell. ACS Applied Materials & Interfaces, 2016, 8, 13793-13803.	4.0	26
25	Targeting Chondroitin Sulfate Proteoglycans: An Emerging Therapeutic Strategy to Treat CNS Injury. ACS Chemical Neuroscience, 2020, 11, 231-232.	1.7	26
26	Crafting of Neuroprotective Octapeptide from Taxol-Binding Pocket of β-Tubulin. ACS Chemical Neuroscience, 2018, 9, 615-625.	1.7	25
27	Dual Functionalized Graphene Oxide Serves as a Carrier for Delivering Oligohistidine―and Biotinâ€Tagged Biomolecules into Cells. Macromolecular Bioscience, 2013, 13, 1478-1484.	2.1	24
28	Cancer Cell Specific Delivery of Photosystem I Through Integrin Targeted Liposome Shows Significant Anticancer Activity. ACS Applied Materials & Interfaces, 2017, 9, 176-188.	4.0	23
29	An amyloid inhibitor octapeptide forms amyloid type fibrous aggregates and affects microtubule motility. Chemical Communications, 2014, 50, 2604-2607.	2.2	22
30	Spectral mapping of 3D multi-cellular tumor spheroids: time-resolved confocal microscopy. Physical Chemistry Chemical Physics, 2016, 18, 18381-18390.	1.3	20
31	In vitro reconstitution of a cell-like environment using liposomes for amyloid beta peptide aggregation and its propagation. Chemical Communications, 2013, 49, 6119.	2.2	19
32	Live Cell Microscopy: A Physical Chemistry Approach. Journal of Physical Chemistry B, 2018, 122, 3023-3036.	1.2	19
33	Synergistic Anticancer Effect of Peptideâ€Đocetaxel Nanoassembly Targeted to Tubulin: Toward Development of Dual Warhead Containing Nanomedicine. Advanced Healthcare Materials, 2017, 6, 1600718.	3.9	18
34	Interaction of AÎ ² peptide with tubulin causes an inhibition of tubulin polymerization and the apoptotic death of cancer cells. Chemical Communications, 2015, 51, 2249-2252.	2.2	17
35	Designed Tetrapeptide Interacts with Tubulin and Microtubule. Langmuir, 2018, 34, 1123-1132.	1.6	16
36	The role of isoaspartate in fibrillation and its prevention by Protein-L-isoaspartyl methyltransferase. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129500.	1.1	16

#	Article	IF	CITATIONS
37	Design of a novel microtubule targeted peptide vesicle for delivering different anticancer drugs. Chemical Communications, 2016, 52, 7549-7552.	2.2	15
38	Amyloid beta peptides inside a reconstituted cell-like liposomal system: aggregation, FRET, fluorescence oscillations and solvation dynamics. Physical Chemistry Chemical Physics, 2016, 18, 30444-30451.	1.3	15
39	Discovery of Neuroregenerative Peptoid from Amphibian Neuropeptide That Inhibits Amyloid-β Toxicity and Crosses Blood–Brain Barrier. ACS Chemical Neuroscience, 2019, 10, 1355-1368.	1.7	15
40	Self-assembling soft structures for intracellular NO release and promotion of neurite outgrowth. Chemical Science, 2017, 8, 6171-6175.	3.7	14
41	Potential Neuroprotective Peptide Emerged from Dual Neurotherapeutic Targets: A Fusion Approach for the Development of Anti-Alzheimer's Lead. ACS Chemical Neuroscience, 2019, 10, 2609-2620.	1.7	14
42	Rhodamine-Based Metal Chelator: A Potent Inhibitor of Metal-Catalyzed Amyloid Toxicity. ACS Omega, 2020, 5, 18958-18967.	1.6	14
43	Fluorescence fluctuation of an antigen–antibody complex: circular dichroism, FCS and smFRET of enhanced GFP and its antibody. Physical Chemistry Chemical Physics, 2015, 17, 25250-25259.	1.3	13
44	Novel tubulin-targeted cell penetrating antimitotic octapeptide. Chemical Communications, 2016, 52, 12657-12660.	2.2	13
45	Genesis of Neuroprotective Peptoid from Aβ30–34 Inhibits Aβ Aggregation and AChE Activity. ACS Chemical Neuroscience, 2018, 9, 2929-2940.	1.7	13
46	Dual-Arm Nanocapsule Targets Neuropilin-1 Receptor and Microtubule: A Potential Nanomedicine Platform. Molecular Pharmaceutics, 2019, 16, 2522-2531.	2.3	13
47	Neurosphere Development from Hippocampal and Cortical Embryonic Mixed Primary Neuron Culture: A Potential Platform for Screening Neurochemical Modulator. ACS Chemical Neuroscience, 2018, 9, 2870-2878.	1.7	12
48	Peptide-Based Soft Materials as Potential Drug Delivery Vehicles. Medicinal Chemistry, 2007, 3, 605-611.	0.7	12
49	A Biotin Micropatterned Surface Generated by Photodestruction Serves as a Novel Platform for Microtubule Organisation and DNA Hybridisation. ChemBioChem, 2013, 14, 689-694.	1.3	11
50	Direct observation of the growth and shrinkage of microtubules by single molecule Förster resonance energy transfer. Physical Chemistry Chemical Physics, 2015, 17, 6687-6690.	1.3	11
51	A dual functional liposome specifically targets melanoma cells through integrin and ephrin receptors. RSC Advances, 2016, 6, 113487-113491.	1.7	10
52	Physical chemistry in a single live cell: confocal microscopy. Physical Chemistry Chemical Physics, 2017, 19, 12620-12627.	1.3	10
53	Effect of gold nanoparticles on the structure and neuroprotective function of protein L-isoaspartyl methyltransferase (PIMT). Scientific Reports, 2021, 11, 14296.	1.6	9
54	Matrix metalloproteinase targeted peptide vesicles for delivering anticancer drugs. Chemical Communications, 2018, 54, 9309-9312.	2.2	8

#	Article	IF	CITATIONS
55	<i>In Silico</i> Approach for Designing Potent Neuroprotective Hexapeptide. ACS Chemical Neuroscience, 2019, 10, 3018-3030.	1.7	7
56	Myelin Associated Inhibitory Proteins as a Therapeutic Target for Healing of CNS Injury. ACS Chemical Neuroscience, 2020, 11, 1699-1700.	1.7	7
57	Why Microtubules Should Be Considered as One of the Supplementary Targets for Designing Neurotherapeutics. ACS Chemical Neuroscience, 2019, 10, 1118-1120.	1.7	6
58	Human Serum Albumin-Inspired Glycopeptide-Based Multifunctional Inhibitor of Amyloid-β Toxicity. ACS Omega, 2020, 5, 18628-18641.	1.6	6
59	AlGaN/GaN HEMT Based Biosensor for Detection of the HER2 Antigen Spiked in Human Serum. IEEE Transactions on Electron Devices, 2022, 69, 4527-4533.	1.6	6
60	Power of Tyrosine Assembly in Microtubule Stabilization and Neuroprotection Fueled by Phenol Appendages. ACS Chemical Neuroscience, 2019, 10, 1506-1516.	1.7	5
61	Co- and distinct existence of Tris-NTA and biotin functionalities on individual and adjacent micropatterned surfaces generated by photo-destruction. Soft Matter, 2014, 10, 2341-2345.	1.2	4
62	Methanolic Extract of Papaya Leaves Shows Neuroprotective Effect. ChemistrySelect, 2017, 2, 9454-9457.	0.7	4
63	Tripodal molecular propellers perturb microtubule dynamics: indole acts as a blade and plays a crucial role in anticancer activity. Chemical Communications, 2019, 55, 2356-2359.	2.2	4
64	Probing Deviation of Adhered Membrane Dynamics between Reconstituted Liposome and Cellular System. Chemistry - an Asian Journal, 2019, 14, 4616-4624.	1.7	4
65	Designed hybrid anticancer nuclear-localized peptide inhibits aggressive cancer cell proliferation. RSC Medicinal Chemistry, 2022, 13, 196-201.	1.7	4
66	Exosome: The "Off-the-Shelf―Cellular Nanocomponent as a Potential Pathogenic Agent, a Disease Biomarker, and Neurotherapeutics. Frontiers in Pharmacology, 2022, 13, .	1.6	4
67	Generation of Neurospheres from Mixed Primary Hippocampal and Cortical Neurons Isolated from E14-E16 Sprague Dawley Rat Embryo. Journal of Visualized Experiments, 2019, , .	0.2	3
68	Three-Dimensional Microfluidic Platform with Neural Organoids: Model System for Unraveling Synapses. ACS Chemical Neuroscience, 2020, 11, 101-102.	1.7	3
69	Fluorine Substituted Proline Enhances the Tubulin Binding Potential of a Tetrapeptide at the GTP Binding Pocket Causing the Inhibition of Microtubule Motility and an Antimitotic Effect. Journal of Physical Chemistry B, 2021, 125, 8768-8780.	1.2	3
70	Development of poly(vinylidene fluoride) graft random copolymer membrane for antifouling and antimicrobial applications. Journal of Industrial and Engineering Chemistry, 2022, 112, 171-181.	2.9	3
71	A potent estrogen receptor and microtubule specific purine-benzothiazole-based fluorescent molecular probe induces apoptotic death of breast cancer cells. Scientific Reports, 2022, 12, .	1.6	3
72	Fluorescence Probing of Fluctuating Microtubule using a Covalent Fluorescent Probe: Effect of Taxol. ChemistrySelect, 2016, 1, 1841-1847.	0.7	2

#	Article	IF	CITATIONS
73	Probing the conformational dynamics of photosystem I in unconfined and confined spaces. Physical Chemistry Chemical Physics, 2018, 20, 449-455.	1.3	2
74	Mitochondria-Targeted New Blue Light-Emitting Fluorescent Molecular Probe. ACS Omega, 2019, 4, 9361-9366.	1.6	2
75	Power of an Organic Electron Acceptor in Modulation of Intracellular Mitochondrial Reactive Oxygen Species: Inducing JNK- and Caspase-Dependent Apoptosis of Cancer Cells. ACS Omega, 2021, 6, 7815-7828.	1.6	2
76	Selfâ€Assembled Antimitotic Peptide Vesicle Designed from <i>α</i> , <i>β</i> â€Tubulin Heterodimer Interface for Anticancer Drug Delivery. Israel Journal of Chemistry, 2022, 62, .	1.0	2
77	Antimitoic Peptides: Synergistic Anticancer Effect of Peptideâ€Docetaxel Nanoassembly Targeted to Tubulin: Toward Development of Dual Warhead Containing Nanomedicine (Adv. Healthcare Mater.) Tj ETQq1 1 0	.7 8 49814 r	gBIT /Overloc
78	Self-Assembly of Antimitotic Peptide at Membranes: Computational and Experimental Investigation. ACS Omega, 2019, 4, 745-754.	1.6	1
79	A Small Molecule with Bridged Carbonyl and Triâ€fluoroâ€acetoâ€phenone Groups Impedes Microtubule Dynamics and Subsequently Triggers Cancer Cell Apoptosis. ChemMedChem, 2021, 16, 2703-2714.	1.6	1
80	Brain-on-a-Chip. , 2022, , 475-493.		1
81	Facile Method of Tubulin Purification from Goat Brain for Reconstitution of Microtubule-Associated Intracellular Function. Methods in Molecular Biology, 2022, 2430, 17-45.	0.4	О