Teresita M Bellido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6321187/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The osteocyte as a signaling cell. Physiological Reviews, 2022, 102, 379-410.	13.1	83
2	The Notch pathway regulates the bone gain induced by PTH anabolic signaling. FASEB Journal, 2022, 36, e22196.	0.2	5
3	Notch3 signaling between myeloma cells and osteocytes in the tumor niche promotes tumor growth and bone destruction. Neoplasia, 2022, 28, 100785.	2.3	5
4	Targeting Notch Inhibitors to the Myeloma Bone Marrow Niche Decreases Tumor Growth and Bone Destruction without Gut Toxicity. Cancer Research, 2021, 81, 5102-5114.	0.4	13
5	YAP and TAZ Mediate Osteocyte Perilacunar/Canalicular Remodeling. Journal of Bone and Mineral Research, 2020, 35, 196-210.	3.1	53
6	Osteocytic miR21 deficiency improves bone strength independent of sex despite having sex divergent effects on osteocyte viability and bone turnover. FEBS Journal, 2020, 287, 941-963.	2.2	10
7	Ex Vivo Organ Cultures as Models to Study Bone Biology. JBMR Plus, 2020, 4, .	1.3	26
8	Skeletal Protection and Promotion of Microbiome Diversity by Dietary Boosting of the Endogenous Antioxidant Response. Journal of Bone and Mineral Research, 2020, 36, 768-778.	3.1	11
9	Basic Aspects of Osteocyte Function. Contemporary Endocrinology, 2020, , 43-69.	0.3	0
10	Glucocorticoid-Induced Bone Fragility Is Prevented in Female Mice by Blocking Pyk2/Anoikis Signaling. Endocrinology, 2019, 160, 1659-1673.	1.4	17
11	Stat3 in osteocytes mediates osteogenic response to loading. Bone Reports, 2019, 11, 100218.	0.2	23
12	Lrp4 Mediates Bone Homeostasis and Mechanotransduction through Interaction with Sclerostin InAVivo. IScience, 2019, 20, 205-215.	1.9	20
13	Aplidin (plitidepsin) is a novel anti-myeloma agent with potent anti-resorptive activity mediated by direct effects on osteoclasts. Oncotarget, 2019, 10, 2709-2721.	0.8	23
14	Consumption of Rabbiteye Blueberry Results in Accumulation of Hippuric Acid in the Bone Marrow and Increased Bone Deposition in Ovariectomized Rats but Few Other Bone Benefits (P06-064-19). Current Developments in Nutrition, 2019, 3, nzz031.P06-064-19.	0.1	2
15	TG-interacting factor 1 (Tgif1)-deficiency attenuates bone remodeling and blunts the anabolic response to parathyroid hormone. Nature Communications, 2019, 10, 1354.	5.8	28
16	IL-17 Receptor Signaling in Osteoblasts/Osteocytes Mediates PTH-Induced Bone Loss and Enhances Osteocytic RANKL Production. Journal of Bone and Mineral Research, 2019, 34, 349-360.	3.1	47
17	Transferrin receptor 2 controls bone mass and pathological bone formation via BMP and Wnt signalling. Nature Metabolism, 2019, 1, 111-124.	5.1	59
18	Aberrantly elevated Wnt signaling is responsible for cementum overgrowth and dental ankylosis. Bone, 2019, 122, 176-183.	1.4	26

#	Article	IF	CITATIONS
19	Glucocorticoid Excess in Bone and Muscle. Clinical Reviews in Bone and Mineral Metabolism, 2018, 16, 33-47.	1.3	31
20	Cx43 Overexpression in Osteocytes Prevents Osteocyte Apoptosis and Preserves Cortical Bone Quality in Aging Mice. JBMR Plus, 2018, 2, 206-216.	1.3	46
21	Skeletal cell YAP and TAZ combinatorially promote bone development. FASEB Journal, 2018, 32, 2706-2721.	0.2	121
22	MMP14 is a novel target of PTH signaling in osteocytes that controls resorption by regulating soluble RANKL production. FASEB Journal, 2018, 32, 2878-2890.	0.2	34
23	Reversal of loss of bone mass in old mice treated with mefloquine. Bone, 2018, 114, 22-31.	1.4	12
24	Glucocorticoids Induce Bone and Muscle Atrophy by Tissue-Specific Mechanisms Upstream of E3 Ubiquitin Ligases. Endocrinology, 2017, 158, 664-677.	1.4	66
25	Differential involvement of Wnt signaling in Bmp regulation of cancellous versus periosteal bone growth. Bone Research, 2017, 5, 17016.	5.4	20
26	New Insights Into the Local and Systemic Functions of Sclerostin: Regulation of Quiescent Bone Lining Cells and Beige Adipogenesis in Peripheral Fat Depots. Journal of Bone and Mineral Research, 2017, 32, 889-891.	3.1	6
27	Klotho expression in osteocytes regulates bone metabolism and controls bone formation. Kidney International, 2017, 92, 599-611.	2.6	86
28	Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging. Aging Cell, 2017, 16, 551-563.	3.0	110
29	PTHrP-Derived Peptides Restore Bone Mass and Strength in Diabetic Mice: Additive Effect of Mechanical Loading. Journal of Bone and Mineral Research, 2017, 32, 486-497.	3.1	40
30	Control of Bone Anabolism in Response to Mechanical Loading and PTH by Distinct Mechanisms Downstream of the PTH Receptor. Journal of Bone and Mineral Research, 2017, 32, 522-535.	3.1	89
31	Role and mechanism of action of sclerostin in bone. Bone, 2017, 96, 29-37.	1.4	314
32	Nrf2 regulates mass accrual and the antioxidant endogenous response in bone differently depending on the sex and age. PLoS ONE, 2017, 12, e0171161.	1.1	33
33	Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner. Nutrients, 2016, 8, 423.	1.7	31
34	Protection From Glucocorticoid-Induced Osteoporosis by Anti-Catabolic Signaling in the Absence of Sost/Sclerostin. Journal of Bone and Mineral Research, 2016, 31, 1791-1802.	3.1	95
35	Conditional Deletion of Murine <i>Fgf23</i> : Interruption of the Normal Skeletal Responses to Phosphate Challenge and Rescue of Genetic Hypophosphatemia. Journal of Bone and Mineral Research, 2016, 31, 1247-1257.	3.1	57
36	Osteocytic signalling pathways as therapeutic targets for bone fragility. Nature Reviews Endocrinology, 2016, 12, 593-605.	4.3	145

#	Article	IF	CITATIONS
37	Bidirectional Notch Signaling and Osteocyte-Derived Factors in the Bone Marrow Microenvironment Promote Tumor Cell Proliferation and Bone Destruction in Multiple Myeloma. Cancer Research, 2016, 76, 1089-1100.	0.4	174
38	Osteocytes and Skeletal Pathophysiology. Current Molecular Biology Reports, 2015, 1, 157-167.	0.8	44
39	Single-Limb Irradiation Induces Local and Systemic Bone Loss in a Murine Model. Journal of Bone and Mineral Research, 2015, 30, 1268-1279.	3.1	70
40	Prevention of glucocorticoid induced-apoptosis of osteoblasts and osteocytes by protecting against endoplasmic reticulum (ER) stress in vitro and in vivo in female mice. Bone, 2015, 73, 60-68.	1.4	121
41	Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone. Proceedings of the United States of America, 2015, 112, E478-86.	3.3	223
42	High Bone Mass–Causing Mutant LRP5 Receptors Are Resistant to Endogenous Inhibitors <i>In Vivo</i> . Journal of Bone and Mineral Research, 2015, 30, 1822-1830.	3.1	20
43	Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain. Bone, 2015, 81, 632-643.	1.4	33
44	Inhibition of Osteocyte Apoptosis Prevents the Increase in Osteocytic Receptor Activator of Nuclear Factor l̂ºB Ligand (RANKL) but Does Not Stop Bone Resorption or the Loss of Bone Induced by Unloading. Journal of Biological Chemistry, 2015, 290, 18934-18942.	1.6	74
45	Osteocyte-Mediated Parathyroid Hormone (PTH) Signaling Regulates Hematopoietic Stem Cells Under Physiologic and Continuous PTH Exposure. Blood, 2015, 126, 1199-1199.	0.6	0
46	Comment on Osteocytes: Masters Orchestrators of Bone. Calcified Tissue International, 2014, 95, 382-383.	1.5	1
47	Role of osteocytes in multiple myeloma bone disease. Current Opinion in Supportive and Palliative Care, 2014, 8, 407-413.	0.5	55
48	Osteocyte-Driven Bone Remodeling. Calcified Tissue International, 2014, 94, 25-34.	1.5	296
49	Notch-Dependent Repression of miR-155 in the Bone Marrow Niche Regulates Hematopoiesis in an NF-κB-Dependent Manner. Cell Stem Cell, 2014, 15, 51-65.	5.2	161
50	Parathyroid Hormone Receptor Signaling Induces Bone Resorption in the Adult Skeleton by Directly Regulating the RANKL Gene in Osteocytes. Endocrinology, 2014, 155, 2797-2809.	1.4	92
51	Bone Cells. , 2014, , 27-45.		23
52	Notch- and TNFα-Activated Signaling Pathways Mediate Osteocyte Apoptosis Triggered By Multiple Myeloma Cells. Blood, 2014, 124, 3354-3354.	0.6	1
53	Effects of PTH on osteocyte function. Bone, 2013, 54, 250-257.	1.4	159
54	Beyond gap junctions: Connexin43 and bone cell signaling. Bone, 2013, 52, 157-166.	1.4	120

#	Article	IF	CITATIONS
55	Resorption Controls Bone Anabolism Driven by Parathyroid Hormone (PTH) Receptor Signaling in Osteocytes. Journal of Biological Chemistry, 2013, 288, 29809-29820.	1.6	41
56	Crosstalk between Caveolin-1/Extracellular Signal-regulated Kinase (ERK) and β-Catenin Survival Pathways in Osteocyte Mechanotransduction. Journal of Biological Chemistry, 2013, 288, 8168-8175.	1.6	62
57	Direct Cell-To-Cell Interactions Between Osteocytes and Multiple Myeloma (MM) Cells Upregulate Sost and Downregulate OPG Expression In Osteocytes: Evidence For Osteocytic Contributions To MM-Induced Bone Disease. Blood, 2013, 122, 3140-3140.	0.6	4
58	Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone, 2012, 50, 209-217.	1.4	396
59	Cell autonomous requirement of connexin 43 for osteocyte survival: Consequences for endocortical resorption and periosteal bone formation. Journal of Bone and Mineral Research, 2012, 27, 374-389.	3.1	204
60	Novel actions of bisphosphonates in bone: Preservation of osteoblast and osteocyte viability. Bone, 2011, 49, 50-55.	1.4	212
61	Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone, 2011, 49, 636-643.	1.4	219
62	PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling. Journal of Bone and Mineral Research, 2011, 26, 1035-1046.	3.1	184
63	Connexin43 interacts with βarrestin: A pre-requisite for osteoblast survival induced by parathyroid hormone. Journal of Cellular Biochemistry, 2011, 112, 2920-2930.	1.2	61
64	Antagonistic interplay between mechanical forces and glucocorticoids in bone: A tale of kinases. Journal of Cellular Biochemistry, 2010, 111, 1-6.	1.2	29
65	Why to Keep Osteocytes Alive and How?. Journal of Korean Endocrine Society, 2009, 24, 223.	0.1	1
66	Detection of Apoptosis of Bone Cells In Vitro. Methods in Molecular Biology, 2008, 455, 51-75.	0.4	4
67	Connexin 43 Is Required for the Anti-Apoptotic Effect of Bisphosphonates on Osteocytes and Osteoblasts In Vivo. Journal of Bone and Mineral Research, 2008, 23, 1712-1721.	3.1	183
68	Mechanical Stimulation of Bone in Vivo Reduces Osteocyte Expression of Sost/Sclerostin. Journal of Biological Chemistry, 2008, 283, 5866-5875.	1.6	1,136
69	Apoptosis of Bone Cells. , 2008, , 237-261.		10
70	Control of Bone Mass and Remodeling by PTH Receptor Signaling in Osteocytes. PLoS ONE, 2008, 3, e2942.	1.1	331
71	Glucocorticoids Induce Osteocyte Apoptosis by Blocking Focal Adhesion Kinase-mediated Survival. Journal of Biological Chemistry, 2007, 282, 24120-24130.	1.6	115
72	A Novel Ligand-independent Function of the Estrogen Receptor Is Essential for Osteocyte and Osteoblast Mechanotransduction. Journal of Biological Chemistry, 2007, 282, 25501-25508.	1.6	122

#	Article	IF	CITATIONS
73	Skeletal Involution by Age-associated Oxidative Stress and Its Acceleration by Loss of Sex Steroids. Journal of Biological Chemistry, 2007, 282, 27285-27297.	1.6	582
74	Osteocyte apoptosis induces bone resorption and impairs the skeletal response to weightlessness. BoneKEy Osteovision, 2007, 4, 252-256.	0.6	15
75	Dissociation of the pro-apoptotic effects of bisphosphonates on osteoclasts from their anti-apoptotic effects on osteoblasts/osteocytes with novel analogs. Bone, 2006, 39, 443-452.	1.4	143
76	Osteocyte Apoptosis Is Induced by Weightlessness in Mice and Precedes Osteoclast Recruitment and Bone Loss. Journal of Bone and Mineral Research, 2006, 21, 605-615.	3.1	414
77	Mechanical forces, osteocyte viability and bone strength. FASEB Journal, 2006, 20, A416.	0.2	Ο
78	Bisphosphonates and Estrogens Inhibit Osteocyte Apoptosis via Distinct Molecular Mechanisms Downstream of Extracellular Signal-regulated Kinase Activation. Journal of Biological Chemistry, 2005, 280, 7317-7325.	1.6	215
79	Transient Versus Sustained Phosphorylation and Nuclear Accumulation of ERKs Underlie Anti-Versus Pro-apoptotic Effects of Estrogens. Journal of Biological Chemistry, 2005, 280, 4632-4638.	1.6	139
80	Wnt Proteins Prevent Apoptosis of Both Uncommitted Osteoblast Progenitors and Differentiated Osteoblasts by β-Catenin-dependent and -independent Signaling Cascades Involving Src/ERK and Phosphatidylinositol 3-Kinase/AKT. Journal of Biological Chemistry, 2005, 280, 41342-41351.	1.6	355
81	Glucocorticoids Act Directly on Osteoblasts and Osteocytes to Induce Their Apoptosis and Reduce Bone Formation and Strength. Endocrinology, 2004, 145, 1835-1841.	1.4	685
82	Prevention of Glucocorticoid-Induced Apoptosis in Osteocytes and Osteoblasts by Calbindin-D28k. Journal of Bone and Mineral Research, 2003, 19, 479-490.	3.1	128
83	Proteasomal Degradation of Runx2 Shortens Parathyroid Hormone-induced Anti-apoptotic Signaling in Osteoblasts. Journal of Biological Chemistry, 2003, 278, 50259-50272.	1.6	337
84	Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids. Journal of Clinical Investigation, 2003, 111, 1651-1664.	3.9	119
85	Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids. Journal of Clinical Investigation, 2003, 111, 1651-1664.	3.9	216
86	Transduction of Cell Survival Signals by Connexin-43 Hemichannels. Journal of Biological Chemistry, 2002, 277, 8648-8657.	1.6	310
87	Apoptosis in Bone Cells. , 2002, , 151-X.		8
88	Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. Journal of Clinical Investigation, 2002, 109, 1041-1048.	3.9	269
89	Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. Journal of Clinical Investigation, 2002, 109, 1041-1048.	3.9	174
90	Extracellular Signal-Regulated Kinases and Calcium Channels Are Involved in the Proliferative Effect of Bisphosphonates on Osteoblastic Cells In Vitro. Journal of Bone and Mineral Research, 2001, 16, 2050-2056.	3.1	73

Teresita M Bellido

#	Article	IF	CITATIONS
91	Expression levels of gp130 in bone marrow stromal cells determine the magnitude of osteoclastogenic signals generated by IL-6-type cytokines. Journal of Cellular Biochemistry, 2000, 79, 532-541.	1.2	38
92	Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. Journal of Clinical Investigation, 1999, 104, 439-446.	3.9	920
93	Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. Journal of Clinical Investigation, 1999, 104, 1363-1374.	3.9	763
94	Decrease in protein tyrosine phosphorylation is associated with F-actin reorganization by retinoic acid in human endometrial adenocarcinoma (RL95-2) cells. , 1999, 178, 320-332.		8
95	Osteoblast Programmed Cell Death (Apoptosis): Modulation by Growth Factors and Cytokines. Journal of Bone and Mineral Research, 1998, 13, 793-802.	3.1	499
96	Activation of the Janus Kinase/STAT (Signal Transducer and Activator of Transcription) Signal Transduction Pathway by Interleukin-6-Type Cytokines Promotes Osteoblast Differentiation*. Endocrinology, 1997, 138, 3666-3676.	1.4	206
97	Sex Steroids, Cytokines and the Bone Marrow: New Concepts on the Pathogenesis of Osteoporosis. Novartis Foundation Symposium, 1995, 191, 187-202.	1.2	11
98	Activation of the Janus Kinase/STAT (Signal Transducer and Activator of Transcription) Signal Transduction Pathway by Interleukin-6-Type Cytokines Promotes Osteoblast Differentiation. , 0, .		47