Shenghu Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6321169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced CO Tolerance for Hydrogen Activation in Auâ^'Pt Dendritic Heteroaggregate Nanostructures. Journal of the American Chemical Society, 2006, 128, 1780-1781.	13.7	229
2	Pt-Cu Core-Shell and Alloy Nanoparticles for Heterogeneous NOx Reduction: Anomalous Stability and Reactivity of a Core-Shell Nanostructure. Angewandte Chemie - International Edition, 2005, 44, 4539-4543.	13.8	214
3	Entropyâ€Maximized Synthesis of Multimetallic Nanoparticle Catalysts via a Ultrasonicationâ€Assisted Wet Chemistry Method under Ambient Conditions. Advanced Materials Interfaces, 2019, 6, 1900015.	3.7	130
4	In Situ Phase Separation of NiAu Alloy Nanoparticles for Preparing Highly Active Au/NiO CO Oxidation Catalysts. ChemPhysChem, 2008, 9, 2475-2479.	2.1	91
5	Design of Highly Efficient Pt-SnO ₂ Hydrogenation Nanocatalysts using Pt@Sn Core–Shell Nanoparticles. ACS Catalysis, 2017, 7, 1583-1591.	11.2	86
6	Kinetically Stabilized Pd@Pt Core–Shell Octahedral Nanoparticles with Thin Pt Layers for Enhanced Catalytic Hydrogenation Performance. ACS Catalysis, 2015, 5, 1335-1343.	11.2	72
7	Size-Controlled Synthesis of Highly Stable and Active Pd@SiO ₂ Core–Shell Nanocatalysts for Hydrogenation of Nitrobenzene. Journal of Physical Chemistry C, 2013, 117, 8974-8982.	3.1	63
8	Controlled synthesis of Pd–NiO@SiO ₂ mesoporous core–shell nanoparticles and their enhanced catalytic performance for p-chloronitrobenzene hydrogenation with H ₂ . Catalysis Science and Technology, 2015, 5, 405-414.	4.1	56
9	Low-Temperature Solution-Phase Synthesis of NiAu Alloy Nanoparticles via Butyllithium Reduction: Influences of Synthesis Details and Application As the Precursor to Active Au-NiO/SiO ₂ Catalysts through Proper Pretreatment. Journal of Physical Chemistry C, 2009, 113, 5758-5765.	3.1	50
10	Enhanced catalytic performance of molybdenum-doped mesoporous SBA-15 for metathesis of 1-butene and ethene to propene. Catalysis Science and Technology, 2014, 4, 4010-4019.	4.1	50
11	Rh nanoclusters encaged in hollow mesoporous silica nanoreactors with enhanced catalytic performance for phenol selective hydrogenation. Chemical Engineering Journal, 2020, 397, 125484.	12.7	46
12	A Generic Method for Preparing Hollow Mesoporous Silica Catalytic Nanoreactors with Metal Oxide Nanoparticles inside Their Cavities. Angewandte Chemie - International Edition, 2018, 57, 16458-16463.	13.8	45
13	Enhanced Catalytic Hydrogenation Activity and Selectivity of Pt-M _{<i>x</i>} O _{<i>y</i>/i>} /Al ₂ O ₃ (M = Ni, Fe, Co) Heteroaggregate Catalysts by <i>in Situ</i> Transformation of PtM Alloy Nanoparticles. Journal of Physical Chemistry C. 2013. 117. 7294-7302.	3.1	37
14	Enhanced Catalytic Performance for Hydrogenation of Substituted Nitroaromatics over Ir-Based Bimetallic Nanocatalysts. ACS Applied Materials & Interfaces, 2019, 11, 6958-6969.	8.0	29
15	Mesoporous KIT-6 Supported Pd–M x O y (MÂ=ÂNi, Co, Fe) Catalysts with Enhanced Selectivity for p-Chloronitrobenzene Hydrogenation. Catalysis Letters, 2015, 145, 784-793.	2.6	28
16	Architecture controlled PtNi@mSiO ₂ and Pt–NiO@mSiO ₂ mesoporous core–shell nanocatalysts for enhanced p-chloronitrobenzene hydrogenation selectivity. RSC Advances, 2015, 5, 20238-20247.	3.6	28
17	Antioxidative and stable PdZn/ZnO/Al2O3 catalyst coatings concerning methanol steam reforming for fuel cell-powered vehicles. Applied Energy, 2020, 268, 115043.	10.1	28
18	Oxygen-vacancy-rich Fe ₃ O ₄ /carbon nanosheets enabling high-attenuation and broadband microwave absorption through the integration of interfacial polarization and charge-separation polarization. Journal of Materials Chemistry A, 2022, 10, 8479-8490.	10.3	26

Shenghu Zhou

#	Article	IF	CITATIONS
19	Sol–gel auto-combustion synthesis of Ni–CexZr1â^'xO2 catalysts for carbon dioxide reforming of methane. RSC Advances, 2013, 3, 22285.	3.6	24
20	Enhanced catalytic performance for metathesis reactions over ordered tungsten and aluminum co-doped mesoporous KIT-6 catalysts. New Journal of Chemistry, 2015, 39, 7971-7978.	2.8	24
21	First-principles study on the electrical and thermal properties of the semiconducting Sc ₃ (CN)F ₂ MXene. RSC Advances, 2018, 8, 22452-22459.	3.6	24
22	Design of Cu-based intermetallic nanocrystals for enhancing hydrogenation selectivity. Chemical Engineering Science, 2019, 196, 402-413.	3.8	22
23	Coordination-Enhanced Synthesis for Hollow Mesoporous Silica Nanoreactors. Chemistry of Materials, 2020, 32, 2086-2096.	6.7	21
24	Tandem catalytic conversion of 1-butene and ethene to propene over combined mesoporous W-FDU-12 and MgO catalysts. RSC Advances, 2015, 5, 23981-23989.	3.6	19
25	Selective hydrogenation of phenol to cyclohexanone over Pd nanoparticles encaged hollow mesoporous silica catalytic nanoreactors. Applied Catalysis A: General, 2021, 610, 117961.	4.3	18
26	Pd-SnO2/Al2O3 heteroaggregate nanocatalysts for selective hydrogenations of p-nitroacetophenone and p-nitrobenzaldehyde. Applied Catalysis A: General, 2018, 549, 273-279.	4.3	17
27	One-Pot Syntheses of Porous Hollow Silica Nanoreactors Encapsulating Rare Earth Oxide Nanoparticles for Methylene Blue Degradation. Industrial & Engineering Chemistry Research, 2019, 58, 3726-3734.	3.7	15
28	Metathesis of 1-butene and ethene to propene over mesoporous W-KIT-6 catalysts: the influence of Si/W ratio. Journal of Porous Materials, 2015, 22, 613-620.	2.6	13
29	Controllable Synthesis of Surface Pt-Rich Bimetallic AuPt Nanocatalysts for Selective Hydrogenation Reactions. ACS Omega, 2019, 4, 15621-15627.	3.5	11
30	Supported CuNi Alloy Catalyzed N-Alkylation of Bioderived 2,5-Dihydroxymethylfuran With Aniline. Industrial & Engineering Chemistry Research, 2019, 58, 6309-6315.	3.7	11
31	First-principles study of magnetism in some novel MXene materials. RSC Advances, 2020, 10, 44430-44436.	3.6	11
32	Structural Identification and Enhanced Catalytic Performance of Alumina-Supported Well-Defined Rh-SnO ₂ Close-Contact Heteroaggragate Nanostructures. ACS Applied Nano Materials, 2019, 2, 5086-5095.	5.0	10
33	Theoretical exploration on the vibrational and mechanical properties of M ₃ C ₂ /M ₃ C _{7₂ MXenes. International Journal of Quantum Chemistry, 2020, 120, e26409.}	2.0	10
34	Hollow Mesoporous Nanoreactors with Encaged PtSn Alloy Nanoparticles for Selective Hydrogenation of Furfural to Furfuryl Alcohol. Industrial & Engineering Chemistry Research, 2021, 60, 6078-6088.	3.7	10
35	Transformation of Au3M/SiO2 (MÂ=ÂNi, Co, Fe) into Au–MO x /SiO2 Catalysts for the Reduction of p-Nitrophenol. Catalysis Letters, 2014, 144, 1001-1008.	2.6	9
36	Enhanced Catalytic Hydrogenation Performance of Rh-Co ₂ O ₃ Heteroaggregate Nanostructures by in Situ Transformation of Rh@Co Core–Shell Nanoparticles. ACS Omega, 2019, 4, 20829-20837.	3.5	9

Shenghu Zhou

#	Article	IF	CITATIONS
37	Highly Efficient Ir–CoO <i>_x</i> Hybrid Nanostructures for the Selective Hydrogenation of Furfural to Furfuryl Alcohol. Langmuir, 2021, 37, 1894-1901.	3.5	9
38	A Generic Method for Preparing Hollow Mesoporous Silica Catalytic Nanoreactors with Metal Oxide Nanoparticles inside Their Cavities. Angewandte Chemie, 2018, 130, 16696-16701.	2.0	8
39	Controlled Synthesis of Manganese Oxide Nanoparticles Encaged in Hollow Mesoporous Silica Nanoreactors and Their Enhanced Dye Degradation Activity. ACS Omega, 2020, 5, 6852-6861.	3.5	8
40	Hydrogenation of Toluene to Methyl Cyclohexane over PtRh Bimetallic Nanoparticle-Encaged Hollow Mesoporous Silica Catalytic Nanoreactors. ACS Omega, 2021, 6, 5846-5855.	3.5	8
41	Pd–Fe _{<i>x</i>} O _{<i>y</i>} Hybrid Nanoparticles Encaged Hollow Mesoporous Silica Nanoreactors for Reduction of Nitroarenes to Aminoarenes. Journal of Physical Chemistry C, 2021, 125, 4001-4009.	3.1	7
42	Controlled Synthesis and Enhanced Catalytic Activity of Well-Defined Close-Contact Pd–ZnO Nanostructures. Langmuir, 2019, 35, 6288-6296.	3.5	6
43	Simultaneous Construction of Silica Nanotubes Loaded with Pd Nanoparticles for Catalytic Hydrodechlorination of Chlorophenols. ACS Applied Nano Materials, 2021, 4, 10692-10700.	5.0	5
44	Fe,Pd Coâ€Incorporated LaCoO ₃ Perovskites: Modification of Thermal Stability and Catalytic Activity for Gasoline Vehicle Exhaust Purification. European Journal of Inorganic Chemistry, 2015, 2015, 2317-2322.	2.0	4
45	Self-Etherification of 5-Hydroxymethylfurfural to 5,5′(Oxy-bis(methylene))bis-2-furfural over Hierarchically Micromesoporous ZSM-5: The Role of BrÃ,nsted- and Lewis-Acid Sites. Industrial & Engineering Chemistry Research, 2022, 61, 987-994.	3.7	3
46	Pt-NixOy heteroaggregate nanoparticles confined in hollow mesoporous silica nanospheres for enhanced hydrolysis of ammonia borane. Microporous and Mesoporous Materials, 2022, 341, 112067.	4.4	3
47	AuPd@Mesoporous SiO ₂ : Synthesis and Selectivity in Catalytic Hydrogenation/Hydrodechlorination of <i>p</i> -Chloronitrobenzene. Journal of Nanoscience and Nanotechnology, 2017, 17, 3744-3750.	0.9	2
48	Synthesis of Hollow Silica Nanotubes from Linear Metallosupramolecular Polyelectrolytes and Their Application as Catalyst Supports for Hydrogenation. ACS Applied Materials & Interfaces, 2022, 14, 5867-5875.	8.0	2
49	Pt Nanoparticles Confined in Hollow Mesoporous Silica Nanoreactors for Phenol Selective Hydrogenation to Cyclohexanol. Chemistry Letters, 2021, 50, 2001-2005.	1.3	0
50	Coating PtRh alloy nanoparticles with mesoporous silica for the hydrogenation of toluene to methylcyclohexane. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 1945-1956.	1.7	0