Carl P Frick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6320843/publications.pdf Version: 2024-02-01

CADI D FDICK

#	Article	IF	CITATIONS
1	<scp>Bodyâ€ŧemperature</scp> s <scp>hapeâ€shifting</scp> liquid crystal elastomers. Journal of Applied Polymer Science, 2021, 138, 50136.	1.3	30
2	Bench scale glass-to-glass bonding for microfluidic prototyping. Microsystem Technologies, 2020, 26, 3581-3589.	1.2	3
3	Biocompatible liquid-crystal elastomers mimic the intervertebral disc. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 107, 103757.	1.5	44
4	Influence of Ti3Ni4 precipitates on the indentation-induced two-way shape-memory effect in Nickel-Titanium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 792, 139373.	2.6	6
5	Cell-Laden Particulate-Composite Hydrogels with Tunable Mechanical Properties Constructed with Gradient-Interface Hydrogel Particles. ACS Applied Polymer Materials, 2019, 1, 2571-2576.	2.0	11
6	Extended Cyclic Deformation Recovery of the Indentationâ€Induced Twoâ€Way Shapeâ€Memory Effect in Nickel–Titanium. Advanced Engineering Materials, 2019, 21, 1801020.	1.6	2
7	Mechanical energy dissipation in polydomain nematic liquid crystal elastomers in response to oscillating loading. Polymer, 2019, 166, 148-154.	1.8	49
8	Composite Hydrogels With Controlled Degradation in 3D Printed Scaffolds. IEEE Transactions on Nanobioscience, 2019, 18, 261-264.	2.2	15
9	Cell Printing in Complex Hydrogel Scaffolds. IEEE Transactions on Nanobioscience, 2019, 18, 265-268.	2.2	3
10	Mechanical characterization of polydopamine-assisted silver deposition on thiol-ene polymer substrates. Surface and Coatings Technology, 2019, 358, 136-143.	2.2	10
11	Biological evaluation and finite-element modeling of porous poly(para-phenylene) for orthopaedic implants. Acta Biomaterialia, 2018, 72, 352-361.	4.1	19
12	Stereolithography of SiOC Polymerâ€Derived Ceramics Filled with SiC Micronwhiskers. Advanced Engineering Materials, 2018, 20, 1800593.	1.6	63
13	Evaluation and Prediction of Human Lumbar Vertebrae Endplate Mechanical Properties Using Indentation and Computed Tomography. Journal of Biomechanical Engineering, 2018, 140, .	0.6	15
14	Thermomechanical properties of monodomain nematic main-chain liquid crystal elastomers. Soft Matter, 2018, 14, 6024-6036.	1.2	53
15	Characterization of poly(para-phenylene)-MWCNT solvent-cast composites. AIMS Materials Science, 2018, 5, 301-319.	0.7	0
16	Characterization and mechanical testing of polydopamine-adhered electroless copper films. Surface and Coatings Technology, 2017, 331, 211-220.	2.2	12
17	A predictive parameter for the shape memory behavior of thermoplastic polymers. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1405-1414.	2.4	31
18	Copperâ€Coated Liquidâ€Crystalline Elastomer via Bioinspired Polydopamine Adhesion and Electroless Deposition. Macromolecular Rapid Communications, 2016, 37, 1912-1917.	2.0	20

CARL P FRICK

#	ARTICLE	IF	CITATIONS
19	A methodology for fabrication of thermomechanically activated switchable surface wettability. Journal of Applied Polymer Science, 2016, 133, .	1.3	5
20	Effect of indentation temperature on nickel-titanium indentation-induced two-way shape-memory surfaces. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 675, 253-261.	2.6	9
21	Shapeâ€memory behavior of highâ€strength amorphous thermoplastic poly(<i>para</i> â€phenylene). Journal of Applied Polymer Science, 2016, 133, .	1.3	22
22	Thermo-mechanical behavior and structure of melt blown shape-memory polyurethane nonwovens. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 545-555.	1.5	23
23	Temperatureâ€Induced Switchable Adhesion using Nickel–Titanium–Polydimethylsiloxane Hybrid Surfaces. Advanced Functional Materials, 2015, 25, 3013-3021.	7.8	58
24	Indentation-induced two-way shape-memory effect in aged Tiâ^'50.9 at.% Ni. MRS Communications, 2015, 5, 77-82.	0.8	5
25	Monotonic and cyclic loading behavior of porous scaffolds made from poly(para-phenylene) for orthopedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 41, 136-148.	1.5	18
26	Highâ€strength poly(<i>para</i> â€phenylene) as an orthopedic biomaterial. Journal of Biomedical Materials Research - Part A, 2014, 102, 3122-3129.	2.1	18
27	Vickers Indentation Induced Oneâ€ <scp>W</scp> ay and Twoâ€ <scp>W</scp> ay Shape Memory Effect in Austenitic Ni <scp>T</scp> i. Advanced Engineering Materials, 2014, 16, 72-79.	1.6	10
28	Porous poly(para-phenylene) scaffolds for load-bearing orthopedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 30, 347-357.	1.5	20
29	Systematic tailoring of water absorption in photopolymerizable (meth)acrylate networks and its effect on mechanical properties. Journal of Applied Polymer Science, 2013, 128, 1913-1921.	1.3	2
30	Effect of viscoelasticity on the spherical and flat adhesion characteristics of photopolymerizable acrylate polymer networks. International Journal of Adhesion and Adhesives, 2013, 44, 184-194.	1.4	23
31	Amorphous-to-crystalline transition of Polyetheretherketone–carbon nanotube composites via resistive heating. Composites Science and Technology, 2013, 89, 110-119.	3.8	15
32	Influence of test temperature on the size effect in molybdenum small-scale compression pillars. Philosophical Magazine Letters, 2013, 93, 331-338.	0.5	43
33	Modeling the glass transition of amorphous networks for shape-memory behavior. Journal of the Mechanics and Physics of Solids, 2013, 61, 1612-1635.	2.3	106
34	Influence of bulk pre-straining on the size effect in nickel compression pillars. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 147-158.	2.6	59
35	Detachment Behavior of Mushroom-Shaped Fibrillar Adhesive Surfaces in Peel Testing. Langmuir, 2013, 29, 15394-15404.	1.6	25

36 Indentation-induced two-way shape-memory effect in NiTi. , 2013, , .

CARL P FRICK

#	Article	IF	CITATIONS
37	Adhesion behavior of polymer networks with tailored mechanical properties using spherical and flat contacts. MRS Communications, 2013, 3, 73-77.	0.8	5
38	Active Materials. Handbook Series for Mechanical Engineering, 2013, , 393-432.	0.0	0
39	Thermally switchable adhesion of photopolymerizable acrylate polymer networks - biomed 2013. Biomedical Sciences Instrumentation, 2013, 49, 141-8.	0.2	1
40	Tensile behavior of porous scaffolds made from poly(para phenylene) - biomed 2013. Biomedical Sciences Instrumentation, 2013, 49, 157-64.	0.2	0
41	Unique Recovery Behavior in Amorphous Shapeâ€Memory Polymer Networks. Macromolecular Materials and Engineering, 2012, 297, 1160-1166.	1.7	30
42	Biodegradable thermoset shapeâ€memory polymer developed from poly(βâ€amino ester) networks. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 777-789.	2.4	25
43	Partially constrained recovery of (meth)acrylate shapeâ€memory polymer networks. Journal of Applied Polymer Science, 2012, 126, 72-82.	1.3	45
44	Influence of orientation on the size effect in bcc pillars with different critical temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1540-1547.	2.6	76
45	Thermo-mechanical Behavior of (Meth)Acrylate Shape-Memory Polymer Networks. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	1
46	On the plasticity of small-scale nickel–titanium shape memory alloys. Scripta Materialia, 2010, 62, 492-495.	2.6	37
47	Size Independent Shape Memory Behavior of Nickel–Titanium. Advanced Engineering Materials, 2010, 12, 808-815.	1.6	46
48	Strength Effects in Micropillars of a Dispersion Strengthened Superalloy. Advanced Engineering Materials, 2010, 12, 385-388.	1.6	66
49	Effect of pre-straining on the size effect in molybdenum pillars. Philosophical Magazine Letters, 2010, 90, 841-849.	0.5	18
50	Correlation between Critical Temperature and Strength of Small-Scale bcc Pillars. Physical Review Letters, 2009, 103, 105501.	2.9	207
51	Effect of orientation and loading rate on compression behavior of small-scale Mo pillars. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 508, 241-246.	2.6	125
52	Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 489, 319-329.	2.6	345
53	Orientation-independent pseudoelasticity in small-scale NiTi compression pillars. Scripta Materialia, 2008, 59, 7-10.	2.6	56
54	Loss of pseudoelasticity in nickel–titanium sub-micron compression pillars. Acta Materialia, 2007, 55, 3845-3855.	3.8	144

CARL P FRICK

#	Article	IF	CITATIONS
55	Stress-induced martensitic transformations and shape memory at nanometer scales. Acta Materialia, 2006, 54, 2223-2234.	3.8	123
56	Tensile deformation of NiTi wires. Journal of Biomedical Materials Research - Part A, 2005, 75A, 810-823.	2.1	51
57	Cast NiTi Shape-Memory Alloys. Advanced Engineering Materials, 2005, 7, 492-507.	1.6	32
58	Thermal processing of polycrystalline NiTi shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 405, 34-49.	2.6	194
59	Thermal Processing of Polycrystalline NiTi Shape Memory Alloys. Materials Research Society Symposia Proceedings, 2004, 855, 25.	0.1	0
60	Cast NiTi Shape-Memory Alloys. Materials Research Society Symposia Proceedings, 2004, 855, 19.	0.1	1
61	Multiscale structure and properties of cast and deformation processed polycrystalline NiTi shape-memory alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 2013-2025.	1.1	95
62	Untersuchung von besonders geformten titan- und schwefelhaltigen Einschlüssen in Roheisenschmelzen mit hohen Kohlenstoffgehalten. Archiv Für Das Eisenhüttenwesen, 1960, 31, 419-422.	0.1	7