
Tanya S Tsoncheva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6320834/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mixed oxides of cerium and manganese as catalysts for total oxidation of ethyl acetate: effect of preparation procedure. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 105.	0.8	3
2	Design Control of Copper-Doped Titania–Zirconia Catalysts for Methanol Decomposition and Total Oxidation of Ethyl Acetate. Symmetry, 2022, 14, 751.	1.1	3
3	Nickel-Decorated Mesoporous Iron–Cerium Mixed Oxides: Microstructure and Catalytic Activity in Methanol Decomposition. ACS Applied Materials & Interfaces, 2022, 14, 873-890.	4.0	5
4	Mesoporous Ce–Fe–Ni nanocomposites encapsulated in carbon-nanofibers: Synthesis, characterization and catalytic behavior in oxygen evolution reaction. Carbon, 2022, 196, 186-202.	5.4	7
5	Formation of Catalytic Active Sites in Hydrothermally Obtained Binary Ceria–Iron Oxides: Composition and Preparation Effects. ACS Applied Materials & Interfaces, 2021, 13, 1838-1852.	4.0	11
6	Biomass waste-derived nitrogen and iron co-doped nanoporous carbons as electrocatalysts for the oxygen reduction reaction. Electrochimica Acta, 2021, 387, 138490.	2.6	23
7	Design and Catalytic Behaviour of Hosted in Activated Carbon Foam CoxZn1â^xFe2O4 Ferrites. Symmetry, 2021, 13, 1532.	1.1	0
8	Synthesis, Mössbauer study and catalytic properties of Cu-Ni-Fe- oxide/nitride mixed-phase materials. Hyperfine Interactions, 2021, 242, 1.	0.2	0
9	Ni0.5M0.5Fe2O4 (M = Cu, Zn) Ferrites Hosted in Nanoporous Carbon from Waste Materials as Catalysts for Hydrogen Production. Waste and Biomass Valorization, 2021, 12, 1371-1384.	⁵ 1.8	5
10	Cobalt ferrite modified with Hf(IV) as a catalyst for oxidation of ethyl acetate. Catalysis Today, 2020, 357, 541-546.	2.2	2
11	Synthesis and characterization of copper-nickel ferrite catalysts for ethyl acetate oxidation. Hyperfine Interactions, 2020, 241, 1.	0.2	14
12	Mesoporous copper-ceria-titania ternary oxides as catalysts for environmental protection: Impact of Ce/Ti ratio and preparation procedure. Applied Catalysis A: General, 2020, 595, 117487.	2.2	8
13	Valorization of coal treatment residues as a host matrix of nanosized nickel, copper and zinc ferrites. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 691-703.	0.8	1
14	NixZn1-xFe2O4 modified activated carbons from industrial waste as catalysts for hydrogen production. Microporous and Mesoporous Materials, 2019, 285, 96-104.	2.2	8
15	Structure and catalytic activity of hydrothermally obtained titanium-tin binary oxides for sustainable environment: Evaluation and control. Microporous and Mesoporous Materials, 2019, 276, 223-231.	2.2	6
16	Activated carbon from Bulgarian peach stones as a support of catalysts for methanol decomposition. Biomass and Bioenergy, 2018, 109, 135-146.	2.9	34
17	Titania and zirconia binary oxides as catalysts for total oxidation of ethyl acetate and methanol decomposition. Journal of Environmental Chemical Engineering, 2018, 6, 2540-2550.	3.3	6
18	Activated carbons from used motor oil as catalyst support for sustainable environmental protection. Microporous and Mesoporous Materials, 2018, 259, 9-16.	2.2	15

#	Article	IF	CITATIONS
19	Template-assisted hydrothermally obtained titania-ceria composites and their application as catalysts in ethyl acetate oxidation and methanol decomposition with a potential for sustainable environment protection. Applied Surface Science, 2017, 396, 1289-1302.	3.1	19
20	Synthesis and Mössbauer spectroscopic investigation of copper-manganese ferrite catalysts for water-gas shift reaction and methanol decomposition. Materials Research Bulletin, 2017, 95, 556-562.	2.7	12
21	Zinc ferrites hosted in activated carbon from waste precursors as catalysts in methanol decomposition. Microporous and Mesoporous Materials, 2016, 229, 59-67.	2.2	12
22	Template-assisted hydrothermally synthesized iron-titanium binary oxides and their application as catalysts for ethyl acetate oxidation. Applied Catalysis A: General, 2016, 528, 24-35.	2.2	13
23	Mesoporous TiO2 powders as host matrices for iron nanoparticles. Effect of the preparation procedure and doping with Hf. Nano Structures Nano Objects, 2016, 7, 56-63.	1.9	12
24	Iron modified titanium–hafnium binary oxides as catalysts in total oxidation of ethyl acetate. Catalysis Communications, 2016, 81, 14-19.	1.6	12
25	Effect of porous structure on the formation of active sites in manganese hosted in ordered mesoporous silica catalysts for environmental protection. Journal of Porous Materials, 2016, 23, 1005-1013.	1.3	11
26	Auto-combustion synthesis, Mössbauer study and catalytic properties of copper-manganese ferrites. Hyperfine Interactions, 2016, 237, 1.	0.2	13
27	Nanostructured copper-zirconia composites as catalysts for methanol decomposition. Applied Catalysis B: Environmental, 2015, 165, 599-610.	10.8	38
28	Formation of catalytic active sites in iron modified activated carbons from agriculture residues. Microporous and Mesoporous Materials, 2015, 217, 87-95.	2.2	15
29	Effect of preparation procedure on the formation of nanostructured ceria–zirconia mixed oxide catalysts for ethyl acetate oxidation: Homogeneous precipitation with urea vs template-assisted hydrothermal synthesis. Applied Catalysis A: General, 2015, 502, 418-432.	2.2	56
30	Activated carbons from waste biomass and low rank coals as catalyst supports for hydrogen production by methanol decomposition. Fuel Processing Technology, 2015, 137, 139-147.	3.7	40
31	Activated carbon from waste biomass as catalyst support: formation of active phase in copper and cobalt catalysts for methanol decomposition. Journal of Porous Materials, 2015, 22, 1127-1136.	1.3	20
32	Multi-component titanium–copper–cobalt- and niobium nanostructured oxides as catalysts for ethyl acetate oxidation. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116, 397-408.	0.8	1
33	Cobalt- and iron-based nanoparticles hosted in SBA-15 mesoporous silica and activated carbon from biomass: Effect of modification procedure. Solid State Sciences, 2015, 48, 286-293.	1.5	13
34	Mössbauer study of Cu1â^'xZnxFe2O4 catalytic materials. Hyperfine Interactions, 2014, 226, 89-97.	0.2	9
35	Cobalt and iron modified activated carbon from coal tar pitch: preparation and application as catalysts for methanol decomposition. Journal of Porous Materials, 2014, 21, 503-512.	1.3	5
36	Copper-cobalt ferrites as catalysts for methanol decomposition. Open Chemistry, 2014, 12, 250-259.	1.0	16

#	Article	IF	CITATIONS
37	Control of copper particles deposition in mesoporous SBA-15 silica by modified CVD method. Inorganica Chimica Acta, 2014, 423, 145-151.	1.2	4
38	Nanostructured tin dioxide – a promising multipurpose support material for catalytic and biocatalytic applications. Chemical Engineering Journal, 2014, 252, 55-63.	6.6	8
39	Effect of mesoporous silica topology on the formation of active sites in copper supported catalysts for methanol decomposition. Applied Catalysis B: Environmental, 2014, 147, 684-697.	10.8	35
40	Cobalt ferrite nanoparticles hosted in activated carbon from renewable sources as catalyst for methanol decomposition. Catalysis Communications, 2014, 55, 43-48.	1.6	18
41	Silica supported copper and cerium oxide catalysts for ethyl acetate oxidation. Journal of Colloid and Interface Science, 2013, 404, 155-160.	5.0	20
42	Tailored copper nanoparticles in ordered mesoporous KIT-6 silica: Preparation and application as catalysts in integrated system for NO removal with products of methanol decomposition. Applied Catalysis A: General, 2013, 464-465, 243-252.	2.2	20
43	Transition metal modified activated carbons from biomass and coal treatment products as catalysts for methanol decomposition. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110, 281-294.	0.8	13
44	Catalytic VOCs elimination over copper and cerium oxide modified mesoporous SBA-15 silica. Applied Catalysis A: General, 2013, 453, 1-12.	2.2	85
45	Pore topology control of supported on mesoporous silicas copper and cerium oxide catalysts for ethyl acetate oxidation. Microporous and Mesoporous Materials, 2013, 180, 156-161.	2.2	20
46	Nanosized Cu0.5Co0.5Fe2O4 ferrite as catalyst for methanol decomposition: Effect of preparation procedure. Catalysis Communications, 2013, 32, 41-46.	1.6	25
47	Formation of catalytic active sites in copper and manganese modified SBA-15 mesoporous silica. Journal of Porous Materials, 2013, 20, 1361-1369.	1.3	4
48	Nanostructured copper, chromium, and tin oxide multicomponent materials as catalysts for methanol decomposition: 11C-radiolabeling study. Journal of Colloid and Interface Science, 2013, 389, 244-251.	5.0	3
49	11C-Radiolabeling study of methanol decomposition on chromium modified SBA-15 silica. Journal of Porous Materials, 2012, 19, 705-711.	1.3	2
50	Spark plasma sintering synthesis of Ni1â^'Zn Fe2O4 ferrites: Mössbauer and catalytic study. Solid State Sciences, 2012, 14, 1092-1099.	1.5	38
51	Size controlled copper nanoparticles hosted in mesoporous silica matrix: Preparation and characterization. Applied Catalysis B: Environmental, 2012, 126, 161-171.	10.8	22
52	Optimization of the preparation procedure of cobalt modified silicas as catalysts in methanol decomposition. Applied Catalysis A: General, 2012, 417-418, 209-219.	2.2	25
53	Copper and chromium modified SBA-15: 11C-radiolabeling catalytic study. Microporous and Mesoporous Materials, 2012, 148, 1-7.	2.2	9
54	Copper and chromium oxide nanocomposite catalysts for simultaneous elimination of CO and oxygenate VOCs in toxic gas emissions. Canadian Journal of Chemistry, 2011, 89, 583-589.	0.6	4

#	Article	IF	CITATIONS
55	Structure and catalytic activity of hosted in mesoporous silicas copper species: Effect of preparation procedure and support pore topology. Applied Catalysis A: General, 2011, 406, 13-21.	2.2	30
56	Structure sensitivity of methanol decomposition on Ni/SiO2 catalysts. Journal of Materials Science, 2011, 46, 7144-7151.	1.7	22
57	Nanosized copper ferrite materials: Mechanochemical synthesis and characterization. Journal of Solid State Chemistry, 2011, 184, 1153-1158.	1.4	47
58	Copper and chromium oxide nanocomposites supported on SBA-15 silica as catalysts for ethylacetate combustion: Effect of mesoporous structure and metal oxide composition. Microporous and Mesoporous Materials, 2011, 137, 56-64.	2.2	11
59	Coordination state of Cu+ ions in Cu-[Al]MCM-41. Applied Catalysis B: Environmental, 2011, 106, 186-186.	10.8	8
60	11C-radiolabeling study of methanol decomposition on copper oxide modified mesoporous SBA-15 silica. Applied Surface Science, 2011, 257, 6661-6666.	3.1	4
61	11C-radiolabeling study of nickel modified H-MCM-41 with methanol as a probe molecule. Journal of Materials Science, 2010, 45, 4229-4235.	1.7	3
62	Novel preparation of nanosized mesoporous SnO2 powders: Physicochemical and catalytic properties. Applied Catalysis B: Environmental, 2010, 94, 158-165.	10.8	35
63	Nanosized iron and chromium oxides supported on mesoporous CeO2 and SBA-15 silica: Physicochemical and catalytic study. Applied Surface Science, 2010, 257, 523-530.	3.1	30
64	Mössbauer study of iron-based perovskite-type materials as potential catalysts for ethyl acetate oxidation. Journal of Physics: Conference Series, 2010, 217, 012043.	0.3	3
65	Thermally synthesized nanosized copper ferrites as catalysts for environment protection. Catalysis Communications, 2010, 12, 105-109.	1.6	71
66	Cobalt and iron oxide modified mesoporous zirconia: Preparation, characterization and catalytic behaviour in methanol conversion. Microporous and Mesoporous Materials, 2009, 120, 389-396.	2.2	22
67	Toluene oxidation on titanium- and iron-modified MCM-41 materials. Journal of Hazardous Materials, 2009, 168, 226-232.	6.5	65
68	Cobalt-modified mesoporous MgO, ZrO2, and CeO2 oxides as catalysts for methanol decomposition. Journal of Colloid and Interface Science, 2009, 333, 277-284.	5.0	56
69	Cobalt oxide species supported on SBA-15, KIT-5 and KIT-6 mesoporous silicas for ethyl acetate total oxidation. Applied Catalysis B: Environmental, 2009, 89, 365-374.	10.8	169
70	Iron oxide nanoparticles supported on ultradispersed diamond powders: Effect of the preparation procedure. Applied Surface Science, 2009, 255, 4322-4328.	3.1	2
71	Radioisotopic study of ¹¹ C-labelling methanol decomposition on iron oxide modified mesoporous MCM-41 silica. Canadian Journal of Chemistry, 2009, 87, 478-485.	0.6	7
72	Novel consecutive 11C- and 12C-methanol adsorption technique for the catalytic active sites characterization of vanadium modified MCM-41. Catalysis Communications, 2009, 10, 1216-1220.	1.6	6

#	Article	IF	CITATIONS
73	Iron oxide nanoparticles supported on NH2- and COOH-functionalized SBA-15. Reaction Kinetics and Catalysis Letters, 2008, 95, 329-336.	0.6	1
74	Physicochemical and catalytic properties of grafted vanadium species on different mesoporous silicas. Journal of Colloid and Interface Science, 2008, 321, 342-349.	5.0	15
75	Iron oxide nanoparticles supported on mesoporous MgO and CeO2: A comparative physicochemical and catalytic study. Microporous and Mesoporous Materials, 2008, 110, 339-346.	2.2	24
76	Critical evaluation of the state of iron oxide nanoparticles on different mesoporous silicas prepared by an impregnation method. Microporous and Mesoporous Materials, 2008, 112, 327-337.	2.2	48
77	Desorption and catalytic study of iron modified MCM-41 silica by 11C-radiolabeled methanol. Catalysis Communications, 2008, 9, 1932-1936.	1.6	8
78	Titanium modified MCM-41 as a catalyst for toluene oxidation. Catalysis Communications, 2008, 10, 304-308.	1.6	21
79	Rhenium and manganese modified activated carbon as catalyst for methanol decomposition. Canadian Journal of Chemistry, 2007, 85, 118-123.	0.6	8
80	Gold and iron nanoparticles in mesoporous silicas: Preparation and characterization. Catalysis Communications, 2007, 8, 1573-1577.	1.6	16
81	Synthesis, characterization and catalytic properties of nanodimensional nickel ferrite/silica composites. Applied Catalysis A: General, 2007, 317, 34-42.	2.2	25
82	Iron and copper oxide modified SBA-15 materials as catalysts in methanol decomposition: Effect of copolymer template removal. Applied Catalysis A: General, 2007, 318, 234-243.	2.2	38
83	Mesoporous CeO2: Synthesis by nanocasting, characterisation and catalytic properties. Microporous and Mesoporous Materials, 2007, 101, 335-341.	2.2	118
84	Mössbauer study of nanodimensional nickel ferrite – mechanochemical synthesis and catalytic properties. Hyperfine Interactions, 2007, 165, 215-220.	0.2	8
85	Copper oxide modified large pore ordered mesoporous silicas for ethyl acetate combustion. Catalysis Communications, 2006, 7, 357-361.	1.6	33
86	Nanosized iron and iron–cobalt spinel oxides as catalysts for methanol decomposition. Applied Catalysis A: General, 2006, 300, 170-180.	2.2	97
87	Preparation, characterization and catalytic behavior in methanol decomposition of nanosized iron oxide particles within large pore ordered mesoporous silicas. Microporous and Mesoporous Materials, 2006, 89, 209-218.	2.2	51
88	MCM-41 silica modified with copper and iron oxides as catalysts for methanol decomposition. Journal of Molecular Catalysis A, 2006, 246, 118-127.	4.8	33
89	Nickel modified ultrananosized diamonds and their application as catalysts in methanol decomposition. Journal of Molecular Catalysis A, 2006, 259, 223-230.	4.8	28
90	The effect of MCM-41 structure on the chemical properties of grafted vanadium oxide species. Applied Catalysis A: General, 2006, 303, 207-212.	2.2	5

#	Article	IF	CITATIONS
91	Iron-oxide-modified nanosized diamond: Preparation, characterization, and catalytic properties in methanol decomposition. Journal of Colloid and Interface Science, 2006, 302, 492-500.	5.0	11
92	Study of mixed valence iron borate catalysts in ethyl acetate oxidation process. Applied Catalysis A: General, 2006, 298, 24-31.	2.2	11
93	Iron oxide modified diamond blends containing ultradispersed diamond. Journal of Colloid and Interface Science, 2006, 300, 183-189.	5.0	9
94	Mössbauer study of nanodimensional nickel ferrite — mechanochemical synthesis and catalytic properties. , 2006, , 215-220.		2
95	Pore design in view of adsorption, reductive and catalytic properties of Fe or Cu oxide modified large mesoporous silicas. Studies in Surface Science and Catalysis, 2005, 158, 773-780.	1.5	3
96	Iron oxide modified mesoporous carbons: Physicochemical and catalytic study. Microporous and Mesoporous Materials, 2005, 81, 333-341.	2.2	40
97	Effect of rhenium on copper supported on activated carbon catalysts for methanol decomposition. Journal of Molecular Catalysis A, 2005, 225, 245-251.	4.8	22
98	Nickelmodifiedlarge poremesoporoussilicas ascatalysts for methanol decomposition. Reaction Kinetics and Catalysis Letters, 2005, 86, 275-280.	0.6	8
99	Effect of support pore size on the structural and catalytic properties of iron and cobalt oxides modified SBA-1, SBA-15, MCM-41 and MCM-48 silica materials. Studies in Surface Science and Catalysis, 2004, , 841-847.	1.5	7
100	Iron modified mesoporous carbon and silica catalysts for methanol decomposition. Reaction Kinetics and Catalysis Letters, 2004, 83, 299-305.	0.6	9
101	Phase composition and catalytic properties in methanol decomposition of iron–ruthenium modified activated carbon. Applied Catalysis A: General, 2004, 267, 67-75.	2.2	14
102	Copper-modified mesoporous MCM-41 silica: FTIR and catalytic study. Journal of Molecular Catalysis A, 2004, 209, 125-134.	4.8	48
103	Mechanochemically synthesized nano-dimensional iron–cobalt spinel oxides as catalysts for methanol decomposition. Applied Catalysis A: General, 2004, 277, 119-127.	2.2	99
104	Effect of precursor of manganese supported on activated carbon catalysts for methanol decomposition. Catalysis Communications, 2004, 5, 95-99.	1.6	14
105	Methanol decomposition on copper and manganese oxides supported on activated carbon. Reaction Kinetics and Catalysis Letters, 2003, 80, 383-390.	0.6	7
106	Studies on the state of iron oxide nanoparticles in MCM-41 and MCM-48 silica materials. Microporous and Mesoporous Materials, 2003, 63, 125-137.	2.2	81
107	Characterization of Cu/MCM-41 and Cu/MCM-48 mesoporous catalysts by FTIR spectroscopy of adsorbed CO. Applied Catalysis A: General, 2003, 241, 331-340.	2.2	58
108	Effect of the precursor and the preparation method on copper based activated carbon catalysts for methanol decomposition to hydrogen and carbon monoxideâ~†. Fuel, 2003, 82, 755-763.	3.4	39

#	Article	IF	CITATIONS
109	CuO – activated carbon catalysts for methanol decomposition to hydrogen and carbon monoxide. Canadian Journal of Chemistry, 2003, 81, 1096-1100.	0.6	11
110	Synthesis and characterization of CuO and Fe2O3 nanoparticles within mesoporous MCM-41/-48 silica. Studies in Surface Science and Catalysis, 2002, 142, 1245-1252.	1.5	16
111	Methanol conversion to hydrocarbons on porous aluminosilicates. Applied Catalysis A: General, 2002, 225, 101-107.	2.2	19
112	Oxidized carbon as a support of copper oxide catalysts for methanol decomposition to hydrogen and carbon monoxide. Fuel, 2002, 81, 203-209.	3.4	29
113	Title is missing!. Reaction Kinetics and Catalysis Letters, 2001, 74, 353-362.	0.6	8
114	Methanol Decomposition on Fe2O3 /MCM-48 Silica Catalyst. Reaction Kinetics and Catalysis Letters, 2001, 74, 385-391.	0.6	17
115	Effect of Chromium on Copper Containing Activated Carbon Catalysts for Methanol Decomposition. Reaction Kinetics and Catalysis Letters, 2001, 72, 383-390.	0.6	21
116	Kinetic study on deactivation of H—Mordenite in methanol to hydrocarbons conversion. Studies in Surface Science and Catalysis, 1999, , 457-460.	1.5	0
117	The effect of hydrogen on the modification of catalytic sites in CoAPO-5 and CoAPSO-5 molecular sieves. Microporous and Mesoporous Materials, 1998, 20, 217-222.	2.2	1
118	Methanol conversion as a test for framework cobalt elucidation in CoAPSO molecular sieves. Applied Catalysis A: General, 1998, 171, 241-245.	2.2	8
119	Effect of the rehydration on the acidity and catalytic activity of SAPO molecular sieves. Catalysis Letters, 1993, 18, 125-135.	1.4	29
120	PROPERTIES OF INDIUM CONTAINING ZEOLITES PREPARED BY A SOLID STATE REACTION., 1993,, 461-468.		11
121	A study of the nonstationary character of the methanol-to-hydrocarbons conversion. Canadian Journal of Chemistry, 1992, 70, 1997-2002.	0.6	4
122	Reaction pathways of methanol over Pt/zeolite catalysts: effect of different active sites. Zeolites, 1989, 9, 516-520.	0.9	2
123	The Effect of the SiO2/Al2O3 Ratio on the Conversion of Methanol over ZSM-5 Zeolites. Zeitschrift Fur Physikalische Chemie, 1986, 149, 237-247.	1.4	9