
Krzysztof Schabowicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/632063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	State-of-the-art non-destructive methods for diagnostic testing of building structures – anticipated development trends. Archives of Civil and Mechanical Engineering, 2010, 10, 5-18.	1.9	189
2	Nondestructive identification of delaminations in concrete floor toppings with acoustic methods. Automation in Construction, 2011, 20, 799-807.	4.8	88
3	Ultrasonic tomography – The latest nondestructive technique for testing concrete members – Description, test methodology, application example. Archives of Civil and Mechanical Engineering, 2014, 14, 295-303.	1.9	80
4	Estimation of earthworks execution time cost by means of artificial neural networks. Automation in Construction, 2010, 19, 570-579.	4.8	79
5	New technique of nondestructive assessment of concrete strength using artificial intelligence. NDT and E International, 2005, 38, 251-259.	1.7	62
6	Non-Destructive Testing of Materials in Civil Engineering. Materials, 2019, 12, 3237.	1.3	60
7	Non-destructive and semi-destructive diagnostics of concrete structures in assessment of their durability. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2015, 63, 87-96.	0.8	57
8	Identification of moisture content in brick walls by means of impedance tomography. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2012, 31, 1774-1792.	0.5	41
9	MATHEMATICALâ€NEURAL MODEL FOR ASSESSING PRODUCTIVITY OF EARTHMOVING MACHINERY. Journal of Civil Engineering and Management, 2007, 13, 47-54.	1.9	39
10	Detection of Flaws in Concrete Using Ultrasonic Tomography and Convolutional Neural Networks. Materials, 2020, 13, 1557.	1.3	37
11	APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO DETERMINE CONCRETE COMPRESSIVE STRENGTH BASED ON NONâ€DESTRUCTIVE TESTS. Journal of Civil Engineering and Management, 2005, 11, 23-32.	1.9	37
12	Application of artificial neural networks in predicting earthmoving machinery effectiveness ratios. Archives of Civil and Mechanical Engineering, 2008, 8, 73-84.	1.9	31
13	Nondestructive Elastic-Wave Tests of Foundation Slab in Office Building. Materials Transactions, 2012, 53, 296-302.	0.4	31
14	The contribution of fiber reinforcement system to the overall toughness of cellulose fiber concrete panels. Construction and Building Materials, 2017, 156, 1028-1034.	3.2	30
15	METHODOLOGY OF NONDESTRUCTIVE IDENTIFICATION OF DEFECTIVE CONCRETE ZONES IN UNILATERALLY ACCESSIBLE MASSIVE MEMBERS. Journal of Civil Engineering and Management, 2013, 19, 775-786.	1.9	29
16	Nondestructive testing of a bottom surface and construction of its profile by ultrasonic tomography. Russian Journal of Nondestructive Testing, 2014, 50, 109-119.	0.3	24
17	Automated control of cellulose fibre cement boards with a non-contact ultrasound scanner. Automation in Construction, 2015, 57, 55-63.	4.8	24
18	Identification of the Degree of Degradation of Fibre-Cement Boards Exposed to Fire by Means of the Acoustic Emission Method and Artificial Neural Networks. Materials, 2019, 12, 656.	1.3	24

Krzysztof Schabowicz

#	Article	IF	CITATIONS
19	Application of X-ray microtomography to quality assessment of fibre cement boards. Construction and Building Materials, 2016, 110, 182-188.	3.2	23
20	Modern acoustic techniques for testing concrete structures accessible from one side only. Archives of Civil and Mechanical Engineering, 2015, 15, 1149-1159.	1.9	21
21	Microstructural characterization of cellulose fibres in reinforced cement boards. Archives of Civil and Mechanical Engineering, 2018, 18, 1068-1078.	1.9	21
22	Identification of the degree of fibre-cement boards degradation under the influence of high temperature. Automation in Construction, 2019, 101, 190-198.	4.8	19
23	A nondestructive methodology for the testing of fibre cement boards by means of a non-contact ultrasound scanner. Construction and Building Materials, 2016, 102, 200-207.	3.2	16
24	ANALYSIS OF FAILURE CONDITIONS FOR A DYNAMICALLY LOADED COMPOSITE FLOOR SYSTEM OF AN INDUSTRIAL BUILDING. Journal of Civil Engineering and Management, 2013, 19, 529-541.	1.9	15
25	Evaluation of Ferromagnetic Steel Hardness Based on an Analysis of the Barkhausen Noise Number of Events. Materials, 2020, 13, 2059.	1.3	13
26	Testing of Materials and Elements in Civil Engineering. Materials, 2021, 14, 3412.	1.3	13
27	Automated multisource electromagnetic inspection of fibre-cement boards. Automation in Construction, 2018, 94, 383-394.	4.8	12
28	Effect of Freeze–Thaw Cycling on the Failure of Fibre-Cement Boards, Assessed Using Acoustic Emission Method and Artificial Neural Network. Materials, 2019, 12, 2181.	1.3	12
29	Investigation of Structural Degradation of Fiber Cement Boards Due to Thermal Impact. Materials, 2019, 12, 944.	1.3	12
30	Identification of microstructural anisotropy of cellulose cement boards by means of nanoindentation. Construction and Building Materials, 2020, 257, 119515.	3.2	10
31	METHODOLOGY FOR NON-DESTRUCTIVE IDENTIFICATION OF THICKNESS OF UNILATERALLY ACCESSIBLE CONCRETE ELEMENTS BY MEANS OF STATE-OF-THE-ART ACOUSTIC TECHNIQUES. Journal of Civil Engineering and Management, 2013, 19, 325-334.	1.9	9
32	Identification of the Destruction Model of Ventilated Facade under the Influence of Fire. Materials, 2020, 13, 2387.	1.3	9
33	Methodology of Neural Identification of Strength of Concrete. ACI Materials Journal, 2005, 102, .	0.3	9
34	The Recognition of the Micro-Events in Cement Composites and the Identification of the Destruction Process Using Acoustic Emission and Sound Spectrum. Materials, 2020, 13, 2988.	1.3	8
35	Reduction of Load Capacity of Fiber Cement Board Facade Cladding under the Influence of Fire. Materials, 2021, 14, 1769.	1.3	8
36	NieniszczÄce badania pÅ,yt wÅ,óknisto-cementowych z wykorzystaniem emisji akustycznej. PrzeglÄd Spawalnictwa, 2016, 88, .	0.5	7

#	Article	IF	CITATIONS
37	Non-destructive identification of cracks in unilaterally accessible massive concrete walls in hydroelectric power plant. Archives of Civil and Mechanical Engineering, 2016, 16, 413-421.	1.9	5
38	Assessment of the Mechanical Properties of ESD Pseudoplastic Resins for Joints in Working Elements of Concrete Structures. Materials, 2020, 13, 2426.	1.3	5
39	The Increase in the Elastic Range and Strengthening Control of Quasi Brittle Cement Composites by Low-Module Dispersed Reinforcement: An Assessment of Reinforcement Effects. Materials, 2021, 14, 341.	1.3	5
40	Multi-Scale Structural Assessment of Cellulose Fibres Cement Boards Subjected to High Temperature Treatment. Materials, 2019, 12, 2449.	1.3	4
41	Mechanical and Non-Destructive Testing of Plasterboards Subjected to a Hydration Process. Materials, 2020, 13, 2405.	1.3	4
42	Tests of Fiber Cement Materials Containing Recycled Cellulose Fibers. Materials, 2020, 13, 2758.	1.3	4
43	Analysis of the Possibility of Plastic Deformation Characterisation in X2CrNi18-9 Steel Using Measurements of Electromagnetic Parameters. Materials, 2021, 14, 2904.	1.3	4
44	Numerical Comparison of Thermal Behaviour Between Ventilated Facades. Studia Geotechnica Et Mechanica, 2020, 42, 297-305.	0.2	4
45	Badania ultradźwiÄ™kowe pÅ,yt wÅ,óknisto-cementowych. PrzeglÄ…d Spawalnictwa, 2016, 88, .	0.5	4
46	Elewacje wentylowane z pÅ,yt wÅ,óknisto-cementowych. MateriaÅy Budowlane, 2016, 1, 114-116.	0.0	3
47	Ultrasonic examination of concrete with one side access in practice. IOP Conference Series: Materials Science and Engineering, 2018, 365, 032058.	0.3	2
48	Efficiency of ventilated facades in terms of airflow in the air gap. Studia Geotechnica Et Mechanica, 2021, 43, 224-236.	0.2	2
49	Nondestructive investigations of expansion gap concrete roughness. Measurement: Journal of the International Measurement Confederation, 2021, 182, 109603.	2.5	2
50	Effect of Geometric Imperfections in the Shape of Buckling Form on the Reduction of Load Capacity of Cylindrical Shell. Archives of Civil Engineering, 2019, 65, 153-166.	0.7	2
51	Identification of physical model of resinous material filling expansion joint in reinforced concrete structures. Journal of Building Engineering, 2022, 45, 103505.	1.6	2
52	Assessment of the Destruction of a Fibre Cement Board Subjected to Fire in a Large-Scale Study. Materials, 2022, 15, 2929.	1.3	2
53	Investigation of Acoustic Properties of Fibre-Cement Boards. , 2018, , .		1
54	Comparative analysis of selected non-destructive methods for concrete diagnosis. IOP Conference Series: Materials Science and Engineering, 2018, 365, 032063.	0.3	1

#	Article	IF	CITATIONS
55	Visualization of fibers and voids inside industrial fiber concrete boards. Material Science & Engineering International Journal, 2017, 1, .	0.0	1
56	Elewacje wentylowane z pÅ,yt wÅ,óknisto-cementowych na podkonstrukcji drewnianej. MateriaÅy Budowlane, 2017, 1, 38-40.	0.0	0
57	Non-destructive tests of fibre-cement materials structure with the use of scanning electron microscope. PrzeglÄd Spawalnictwa, 2018, 90, .	0.5	0