
Mirjam H M Heemskerk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/632042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesenchymal stem cells promote engraftment of human umbilical cord blood–derived CD34+ cells in NOD/SCID mice. Experimental Hematology, 2002, 30, 870-878.	0.4	470
2	Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2742-2747.	7.1	400
3	Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nature Methods, 2009, 6, 520-526.	19.0	286
4	Allo-HLA reactivity of virus-specific memory T cells is common. Blood, 2010, 115, 3146-3157.	1.4	270
5	Inhibition of T Cell and Promotion of Natural Killer Cell Development by the Dominant Negative Helix Loop Helix Factor Id3. Journal of Experimental Medicine, 1997, 186, 1597-1602.	8.5	255
6	Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood, 2003, 102, 3530-3540.	1.4	204
7	Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10972-10977.	7.1	196
8	Reprogramming of Virus-specific T Cells into Leukemia-reactive T Cells Using T Cell Receptor Gene Transfer. Journal of Experimental Medicine, 2004, 199, 885-894.	8.5	176
9	Early stages in the development of human T, natural killer and thymic dendritic cells. Immunological Reviews, 1998, 165, 75-86.	6.0	168
10	High-throughput identification of antigen-specific TCRs by TCR gene capture. Nature Medicine, 2013, 19, 1534-1541.	30.7	166
11	Efficiency of T-cell receptor expression in dual-specific T cells is controlled by the intrinsic qualities of the TCR chains within the TCR-CD3 complex. Blood, 2007, 109, 235-243.	1.4	156
12	Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3825-3830.	7.1	150
13	Mutated nucleophosmin 1 as immunotherapy target in acute myeloid leukemia. Journal of Clinical Investigation, 2019, 129, 774-785.	8.2	128
14	Retroviral transfer of human CD20 as a suicide gene for adoptive T-cell therapy. Haematologica, 2009, 94, 1316-1320.	3.5	121
15	TCR Gene Rearrangements and Expression of the Pre-T Cell Receptor Complex During Human T-Cell Differentiation. Blood, 1999, 93, 3033-3043.	1.4	116
16	The Human Leukocyte Antigen–presented Ligandome of B Lymphocytes. Molecular and Cellular Proteomics, 2013, 12, 1829-1843.	3.8	113
17	Selective graft-versus-leukemia depends on magnitude and diversity of the alloreactive T cell response. Journal of Clinical Investigation, 2017, 127, 517-529.	8.2	107
18	PRAME-Specific Allo-HLA–Restricted T Cells with Potent Antitumor Reactivity Useful for Therapeutic T-Cell Receptor Gene Transfer. Clinical Cancer Research. 2011, 17, 5615-5625.	7.0	104

#	Article	IF	CITATIONS
19	Characterization of circulating T-, NK-, and NKT cell subsets in patients with colorectal cancer: the peripheral blood immune cell profile. Cancer Immunology, Immunotherapy, 2019, 68, 1011-1024.	4.2	99
20	Strong selection of virus-specific cytotoxic CD4+ T-cell clones during primary human cytomegalovirus infection. Blood, 2006, 108, 3121-3127.	1.4	93
21	αβ T-Cell Receptor Engineered γδT Cells Mediate Effective Antileukemic Reactivity. Cancer Research, 2006, 66, 3331-3337.	0.9	92
22	Disruption of αβ but not of γδT cell development by overexpression of the helix–loop–helix protein Id3 in committed T cell progenitors. EMBO Journal, 1999, 18, 2793-2802.	7.8	91
23	Multiple myeloma–reactive T cells recognize an activation-induced minor histocompatibility antigen encoded by the ATP-dependent interferon-responsive (ADIR) gene. Blood, 2007, 109, 4089-4096.	1.4	90
24	Designer T cells by T cell receptor replacement. European Journal of Immunology, 2006, 36, 3052-3059.	2.9	89
25	Naturally Processed Non-canonical HLA-A*02:01 Presented Peptides. Journal of Biological Chemistry, 2015, 290, 2593-2603.	3.4	89
26	PRAME as a Potential Target for Immunotherapy in Metastatic Uveal Melanoma. JAMA Ophthalmology, 2017, 135, 541.	2.5	87
27	Dual HLA class I and class II restricted recognition of alloreactive T lymphocytes mediated by a single T cell receptor complex. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6806-6811.	7.1	79
28	Prolonged activation of nasal immune cell populations and development of tissue-resident SARS-CoV-2-specific CD8+ T cell responses following COVID-19. Nature Immunology, 2022, 23, 23-32.	14.5	74
29	microRNA 125a Regulates MHC-I Expression on Esophageal Adenocarcinoma Cells, Associated With Suppression of Antitumor Immune Response and Poor Outcomes of Patients. Gastroenterology, 2018, 155, 784-798.	1.3	70
30	Genetic Modification of Human B-Cell Development: B-Cell Development Is Inhibited by the Dominant Negative Helix Loop Helix Factor Id3. Blood, 1999, 94, 2637-2646.	1.4	69
31	Varicellovirus UL49.5 Proteins Differentially Affect the Function of the Transporter Associated with Antigen Processing, TAP. PLoS Pathogens, 2008, 4, e1000080.	4.7	68
32	Enrichment of an Antigen-Specific T Cell Response by Retrovirally Transduced Human Dendritic Cells. Cellular Immunology, 1999, 195, 10-17.	3.0	67
33	Allo-HLA–reactive T cells inducing graft-versus-host disease are single peptide specific. Blood, 2011, 118, 6733-6742.	1.4	64
34	Adoptive Immunotherapy Using PRAME-Specific T Cells in Medulloblastoma. Cancer Research, 2018, 78, 3337-3349.	0.9	64
35	Identification of non-mutated neoantigens presented by TAP-deficient tumors. Journal of Experimental Medicine, 2018, 215, 2325-2337.	8.5	64
36	Accurate quantitation of MHC-bound peptides by application of isotopically labeled peptide MHC complexes. Journal of Proteomics, 2014, 109, 240-244.	2.4	63

#	Article	IF	CITATIONS
37	HLA-DP as specific target for cellular immunotherapy in HLA class II-expressing B-cell leukemia. Leukemia, 2008, 22, 1387-1394.	7.2	60
38	Pretransplantation CMV-specific T cells protect recipients of T-cell-depleted grafts against CMV-related complications. Blood, 2006, 107, 389-396.	1.4	59
39	αβ T Cell Receptor Transfer to γδT Cells Generates Functional Effector Cells without Mixed TCR Dimers In Vivo. Journal of Immunology, 2009, 182, 164-170.	0.8	57
40	TCR-transgenic lymphocytes specific for HMMR/Rhamm limit tumor outgrowth in vivo. Blood, 2012, 119, 3440-3449.	1.4	55
41	A Jurkat 76 based triple parameter reporter system to evaluate TCR functions and adoptive T cell strategies. Oncotarget, 2018, 9, 17608-17619.	1.8	55
42	Targeting human Acyl-CoA:cholesterol acyltransferase as a dual viral and TÂcell metabolic checkpoint. Nature Communications, 2021, 12, 2814.	12.8	54
43	Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory TÂcells. Cancer Cell, 2022, 40, 545-557.e13.	16.8	53
44	The molecular bases of δ/αβ T cell–mediated antigen recognition. Journal of Experimental Medicine, 2014, 211, 2599-2615.	8.5	52
45	The SPPL3-Defined Glycosphingolipid Repertoire Orchestrates HLA Class I-Mediated Immune Responses. Immunity, 2021, 54, 132-150.e9.	14.3	52
46	Early Cytomegalovirus Reactivation Leaves a Specific and Dynamic Imprint on the Reconstituting T Cell Compartment Long-Term after Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2014, 20, 655-661.	2.0	50
47	Simultaneous Deletion of Endogenous TCRαβ for TCR Gene Therapy Creates an Improved and Safe Cellular Therapeutic. Molecular Therapy, 2020, 28, 64-74.	8.2	50
48	Functional role of alternatively spliced deoxycytidine kinase in sensitivity to cytarabine of acute myeloid leukemic cells. Blood, 2002, 99, 1373-1380.	1.4	46
49	Minor histocompatibility antigens as targets of graft-versus-leukemia reactions. Current Opinion in Hematology, 2002, 9, 497-502.	2.5	46
50	Impact of Peptides on the Recognition of HLA Class I Molecules by Human HLA Antibodies. Journal of Immunology, 2005, 175, 5950-5957.	0.8	46
51	Functional Analysis of Killer Ig-Like Receptor-Expressing Cytomegalovirus-Specific CD8+ T Cells. Journal of Immunology, 2009, 182, 92-101.	0.8	46
52	Transduction of Human T Cells with a Novel T-Cell Receptor Confers Anti-HCV Reactivity. PLoS Pathogens, 2010, 6, e1001018.	4.7	46
53	Defective synthesis or association of T-cell receptor chains underlies loss of surface T-cell receptor–CD3 expression in enteropathy-associated T-cell lymphoma. Blood, 2008, 112, 5103-5110.	1.4	45
54	Pulmonary immune responses against Aspergillus fumigatus are characterized by high frequencies of IL-17 producing T-cells. Journal of Infection, 2017, 74, 81-88.	3.3	45

#	Article	IF	CITATIONS
55	Quantitative analysis of mRNA-1273 COVID-19 vaccination response in immunocompromised adult hematology patients. Blood Advances, 2022, 6, 1537-1546.	5.2	45
56	Functional Human Antigen-Specific T Cells Produced In Vitro Using Retroviral T Cell Receptor Transfer into Hematopoietic Progenitors. Journal of Immunology, 2007, 179, 4959-4968.	0.8	44
57	TCR-based therapy for multiple myeloma and other B-cell malignancies targeting intracellular transcription factor BOB1. Blood, 2017, 129, 1284-1295.	1.4	44
58	TCR Gene Rearrangements and Expression of the Pre-T Cell Receptor Complex During Human T-Cell Differentiation. Blood, 1999, 93, 3033-3043.	1.4	44
59	CLEC12A-Mediated Antigen Uptake and Cross-Presentation by Human Dendritic Cell Subsets Efficiently Boost Tumor-Reactive T Cell Responses. Journal of Immunology, 2016, 197, 2715-2725.	0.8	43
60	Discovery of T Cell Epitopes Implementing HLA-Peptidomics into a Reverse Immunology Approach. Journal of Immunology, 2013, 190, 3869-3877.	0.8	40
61	Genetic engineering of virus-specific T cells with T-cell receptors recognizing minor histocompatibility antigens for clinical application. Haematologica, 2008, 93, 1535-1543.	3.5	38
62	Framework engineering to produce dominant T cell receptors with enhanced antigen-specific function. Nature Communications, 2019, 10, 4451.	12.8	38
63	Allogeneic HLA-A*02–Restricted WT1-Specific T Cells from Mismatched Donors Are Highly Reactive but Show Off-Target Promiscuity. Journal of Immunology, 2011, 187, 2824-2833.	0.8	37
64	Characterization of the T-Cell–Mediated Immune Response Against the Aspergillus fumigatus Proteins Crf1 and Catalase 1 in Healthy Individuals. Journal of Infectious Diseases, 2013, 208, 847-856.	4.0	37
65	A Good Manufacturing Practice procedure to engineer donor virus-specific T cells into potent anti-leukemic effector cells. Haematologica, 2014, 99, 759-768.	3.5	37
66	Natural killer cells facilitate PRAME-specific T-cell reactivity against neuroblastoma. Oncotarget, 2015, 6, 35770-35781.	1.8	37
67	High-Throughput Identification of Potential Minor Histocompatibility Antigens by MHC Tetramer-Based Screening: Feasibility and Limitations. PLoS ONE, 2011, 6, e22523.	2.5	36
68	Optimization of the HA-1-specific T-cell receptor for gene therapy of hematologic malignancies. Haematologica, 2011, 96, 477-481.	3.5	36
69	Identification of Biological Relevant Minor Histocompatibility Antigens within the B-lymphocyte–Derived HLA-Ligandome Using a Reverse Immunology Approach. Clinical Cancer Research, 2015, 21, 2177-2186.	7.0	36
70	Specific TÂCell Responses against Minor Histocompatibility Antigens Cannot Generally Be Explained by Absence of Their Allelic Counterparts on the Cell Surface. Proteomics, 2018, 18, e1700250.	2.2	34
71	Preclinical Strategies to Identify Off-Target Toxicity of High-Affinity TCRs. Molecular Therapy, 2018, 26, 1206-1214.	8.2	33
72	New tools to monitor the impact of viral infection on the alloreactive Tâ€cell repertoire. Tissue Antigens, 2009, 74, 290-297.	1.0	32

5

#	Article	IF	CITATIONS
73	Induction of A. fumigatus-specific CD4-positive T cells in patients recovering from invasive aspergillosis. Haematologica, 2014, 99, 1255-1263.	3.5	31
74	Adult and cord blood T cells can acquire HA-1 specificity through HA-1 T-cell receptor gene transfer. Haematologica, 2005, 90, 1415-21.	3.5	31
75	Allogeneic disparities in immunoglobulin-like transcript 5 induce potent antibody responses in hematopoietic stem cell transplant recipients. Blood, 2009, 114, 2323-2332.	1.4	29
76	PRAME and HLA Class I expression patterns make synovial sarcoma a suitable target for PRAME specific T-cell receptor gene therapy. Oncolmmunology, 2018, 7, e1507600.	4.6	28
77	Generating HPV specific T helper cells for the treatment of HPV induced malignancies using TCR gene transfer. Journal of Translational Medicine, 2011, 9, 147.	4.4	27
78	Mixed functional characteristics correlating with <scp>TCR</scp> â€ligand k _{off} â€rate of <scp>MHC</scp> â€tetramer reactive <scp>T</scp> cells within the naive <scp>T</scp> â€cell repertoire. European Journal of Immunology, 2013, 43, 3038-3050.	2.9	27
79	Identification of a Coordinated CD8 and CD4 T Cell Response Directed Against Mismatched HLA Class I Causing Severe Acute Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2012, 18, 210-219.	2.0	26
80	HLA class II restricted T-cell receptor gene transfer generates CD4+ T cells with helper activity as well as cytotoxic capacity. Gene Therapy, 2005, 12, 1686-1695.	4.5	24
81	Peripheral and systemic antigens elicit an expandable pool of resident memory CD8 ⁺ T cells in the bone marrow. European Journal of Immunology, 2019, 49, 853-872.	2.9	24
82	Generation of CD20-specific TCRs for TCR gene therapy of CD20low B-cell malignancies insusceptible to CD20-targeting antibodies. Oncotarget, 2016, 7, 77021-77037.	1.8	24
83	The Epstein-Barr Virus Glycoprotein gp150 Forms an Immune-Evasive Glycan Shield at the Surface of Infected Cells. PLoS Pathogens, 2016, 12, e1005550.	4.7	23
84	Immunopeptidome Analysis of HLA-DPB1 Allelic Variants Reveals New Functional Hierarchies. Journal of Immunology, 2020, 204, 3273-3282.	0.8	23
85	Tollâ€like receptor 7/8â€matured RNAâ€transduced dendritic cells as postâ€remission therapy in acute myeloid leukaemia: results of a phase I trial. Clinical and Translational Immunology, 2020, 9, e1117.	3.8	23
86	Kinetic Preservation of Dual Specificity of Coprogrammed Minor Histocompatibility Antigen-Reactive Virus-Specific T Cells. Cancer Research, 2009, 69, 2034-2041.	0.9	21
87	Design and validation of conditional ligands for <scp>HLAâ€B</scp> *08:01, <scp>HLAâ€B</scp> *15:01, <scp>HLAâ€B</scp> *35:01, and <scp>HLAâ€B</scp> *44:05. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 967-975.	1.5	21
88	Monitoring of indirect allorecognition: wishful thinking or solid data?. Tissue Antigens, 2008, 71, 1-15.	1.0	19
89	Peptide Binding to HLA-E Molecules in Humans, Nonhuman Primates, and Mice Reveals Unique Binding Peptides but Remarkably Conserved Anchor Residues. Journal of Immunology, 2020, 205, 2861-2872.	0.8	19
90	Comparing CAR and TCR engineered T cell performance as a function of tumor cell exposure. Oncolmmunology, 2022, 11, 2033528.	4.6	19

#	Article	IF	CITATIONS
91	Involvement of caspase-8 in chemotherapy-induced apoptosis of patient derived leukemia cell lines independent of the death receptor pathway and downstream from mitochondria. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 181-193.	4.9	18
92	Therapeutic targeting of the BCR-associated protein CD79b in a TCR-based approach is hampered by aberrant expression of CD79b. Blood, 2015, 125, 949-958.	1.4	17
93	HA-1H T-Cell Receptor Gene Transfer to Redirect Virus-Specific T Cells for Treatment of Hematological Malignancies After Allogeneic Stem Cell Transplantation: A Phase 1 Clinical Study. Frontiers in Immunology, 2020, 11, 1804.	4.8	17
94	Molecular persistence of chronic myeloid leukemia caused by donor T cells specific for lineage-restricted maturation antigens not recognizing immature progenitor-cells. Leukemia, 2006, 20, 1040-1046.	7.2	16
95	Identification of Varicella-Zoster Virus-Specific CD8 T Cells in Patients after T-Cell-Depleted Allogeneic Stem Cell Transplantation. Journal of Virology, 2009, 83, 7361-7364.	3.4	16
96	Activation of virus-specific major histocompatibility complex class II-restricted CD8+ cytotoxic T cells in CD4-deficient mice. European Journal of Immunology, 1995, 25, 1109-1112.	2.9	15
97	T-cell receptor gene transfer for the treatment of leukemia and other tumors. Haematologica, 2010, 95, 15-19.	3.5	15
98	Extracellular Domains of CD8α and CD8ß Subunits Are Sufficient for HLA Class I Restricted Helper Functions of TCR-Engineered CD4+ T Cells. PLoS ONE, 2013, 8, e65212.	2.5	15
99	Differential activation of the death receptor pathway in human target cells induced by cytotoxic T lymphocytes showing different kinetics of killing. Haematologica, 2007, 92, 1671-1678.	3.5	14
100	Cytomegalovirus-Induced Expression of CD244 after Liver Transplantation Is Associated with CD8+ T Cell Hyporesponsiveness to Alloantigen. Journal of Immunology, 2015, 195, 1838-1848.	0.8	13
101	Clinically applicable CD34+-derived blood dendritic cell subsets exhibit key subset-specific features and potently boost anti-tumor T and NK cell responses. Cancer Immunology, Immunotherapy, 2021, 70, 3167-3181.	4.2	13
102	HLA Monomers as a Tool to Monitor Indirect Allorecognition. Transplantation, 2014, 97, 1119-1127.	1.0	12
103	HLA Class I Antigen Expression in Conjunctival Melanoma Is Not Associated With PD-L1/PD-1 Status. , 2018, 59, 1005.		12
104	T-cell receptor gene transfer for treatment of leukemia. Cytotherapy, 2008, 10, 108-115.	0.7	11
105	Rapid Re-expression of Retrovirally Introduced VersusEndogenous TCRs in Engineered T cells AfterAntigen-specific Stimulation. Journal of Immunotherapy, 2011, 34, 165-174.	2.4	11
106	Multi-cistronic vector encoding optimized safety switch for adoptive therapy with T-cell receptor-modified T cells. Gene Therapy, 2013, 20, 861-867.	4.5	11
107	Transcriptional silencing of RFXAP in MHC class II-deficiencyâ~†. Molecular Immunology, 2008, 45, 2920-2928.	2.2	10
108	A broad and systematic approach to identify B cell malignancy-targeting TCRs for multi-antigen-based TÂcell therapy. Molecular Therapy, 2022, 30, 564-578.	8.2	10

#	Article	IF	CITATIONS
109	Induction of Antigen-Specific T-Cell Responses through Dendritic Cell Vaccination in AML: Results of a Phase I/II Trial and Ex Vivo Enhancement By Checkpoint Blockade. Blood, 2016, 128, 764-764.	1.4	10
110	T cell receptor engineering of primary NK cells to therapeutically target tumors and tumor immune evasion. , 2022, 10, e003715.		10
111	Rapid assessment of the antigenic integrity of tetrameric HLA complexes by human monoclonal HLA antibodies. Journal of Immunological Methods, 2006, 315, 153-161.	1.4	9
112	Identification of Functional HLA-A*01:01–Restricted Epstein-Barr Latent Membrane Protein 2–Specific T-Cell Receptors. Journal of Infectious Diseases, 2022, 226, 833-842.	4.0	9
113	Convalescent Plasma in a Patient with Protracted COVID-19 and Secondary Hypogammaglobulinemia Due to Chronic Lymphocytic Leukemia: Buying Time to Develop Immunity?. Infectious Disease Reports, 2021, 13, 855-864.	3.1	9
114	Chimeric Antigen Receptor (CAR) Regulatory T-Cells in Solid Organ Transplantation. Frontiers in Immunology, 2022, 13, .	4.8	9
115	WT1-specific TCRs directed against newly identified peptides install antitumor reactivity against acute myeloid leukemia and ovarian carcinoma. , 2022, 10, e004409.		9
116	A CD22-reactive TCR from the T-cell allorepertoire for the treatment of acute lymphoblastic leukemia by TCR gene transfer. Oncotarget, 2016, 7, 71536-71547.	1.8	7
117	SNP-Based Genome-Wide Identification of Hematopoiesis-Restricted Minor Histocompatibility Antigens. Blood, 2008, 112, 814-814.	1.4	5
118	Allogeneic HLA-A2-Restricted WT1-Specific T Cells From Mismatched Donors Are Highly Reactive but Show Potentially Hazardous Promiscuity Blood, 2009, 114, 4081-4081.	1.4	5
119	Optimizing TCR gene transfer. Clinical Immunology, 2006, 119, 121-122.	3.2	4
120	Healthy cells functionally present TAP-independent SSR1 peptides: implications for selection of clinically relevant antigens. IScience, 2021, 24, 102051.	4.1	4
121	An HLA-A*11:01-Binding Neoantigen from Mutated NPM1 as Target for TCR Gene Therapy in AML. Cancers, 2021, 13, 5390.	3.7	3
122	Inducible MyD88/CD40 (iMC) Enhances Proliferation and Survival of Tumor-Specific TCR-Modified T Cells and Improves Anti-Tumor Efficacy in Myeloma. Blood, 2016, 128, 4550-4550.	1.4	2
123	Identification of Multiple HLA Class II Epitopes of Aspergillus Fumigatus by Generation of CD4+ T Cell Clones Recognizing the A. Fumigatus proteins Crf1 and Catalase1. Blood, 2010, 116, 2332-2332.	1.4	2
124	Uptake of HLA Alloantigens via CD89 and CD206 Does Not Enhance Antigen Presentation by Indirect Allorecognition. Journal of Immunology Research, 2016, 2016, 1-12.	2.2	1
125	746. Go-TCR: Inducible MyD88/CD40 (iMC) Enhances Proliferation and Survival of Tumor-Specific TCR-Modified T Cells, Increasing Anti-Tumor Efficacy. Molecular Therapy, 2016, 24, S294-S295.	8.2	1
126	Determination of the Cytotoxic T Cell Epitopes of Mouse Hepatitis Virus, Using Elution of Viral Peptides from Class I MHC Molecules as an Approach. Advances in Experimental Medicine and Biology, 1994, 342, 407-412.	1.6	1

#	Article	IF	CITATIONS
127	High Avidity PRAME Specific T Cells Derived From In Vivo HLA Mismatched Transplantation Setting Potentially Useful for Immunotherapeutic Strategies Blood, 2009, 114, 4087-4087.	1.4	1
128	T Cell Receptors Specific for the Intracellular Transcription Factor Bob1 Allow Efficient Targeting of Human B Cell Leukemia and Multiple Myeloma. Blood, 2014, 124, 3832-3832.	1.4	1
129	Inducible MyD88/CD40 Enhances Proliferation and Survival of PRAME-Specific TCR-Engineered T Cells and Increases Anti-Tumor Effects in Myeloma. Blood, 2015, 126, 1886-1886.	1.4	1
130	T Cell Receptor Gene Therapy Targeting the Intracellular Transcription Factor Bob1 for the Treatment of Multiple Myeloma and Other B Cell Malignancies. Blood, 2015, 126, 3002-3002.	1.4	1
131	Endogenous Immunoglobulin-Derived Neoepitopes Are Processed and Form a Sizeable Fraction of the HLA Class I Ligandome of Human Lymphoma Cells. Blood, 2016, 128, 914-914.	1.4	1
132	The Functional Activity of Genetically Engineered T Cell Receptor Transferred T Cells Is Highly Dependent on Pairing Properties of the Transferred TCR α and β Chains Blood, 2004, 104, 1753-1753.	1.4	1
133	Cutting Edge: Unconventional CD8 ⁺ T Cell Recognition of a Naturally Occurring HLA-A*02:01–Restricted 20mer Epitope. Journal of Immunology, 2022, , ji2101208.	0.8	1
134	The molecular bases of Î1̂2 T-cell mediated antigen recognition. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s238-s238.	0.1	0
135	MB-64ADOPTIVE CELL IMMUNOTHERAPY IN MEDULLOBLASTOMA BASED ON T CELLS REDIRECTED TOWARD TUMOR CELLS BY PRAME SPECIFIC αβTCR GENE MODIFICATION. Neuro-Oncology, 2016, 18, iii111.3-iii111.	1.2	0
136	Retroviral Gene Transfer of T Cell Receptors (TCR) Specific for Minor Histocompatibility Antigens to Virus-Specific T Cells as Cellular Immunotherapy of Patients with Relapsed Hematological Malignancies after Allogeneic Stem Cell Transplantation Blood, 2005, 106, 5529-5529.	1.4	0
137	Re-Engineering Î ³ δT Cells by Î \pm Î ² T Cell Receptor Gene Transfer Creates Potent Effector Cells with Anti-Leukemic Reactivity Blood, 2005, 106, 1288-1288.	1.4	0
138	Physiological TCR Modulation after Antigen Specific Triggering of Introduced TCRs under Control of a Retroviral Promotor Blood, 2005, 106, 5537-5537.	1.4	0
139	GVHD in HLA-A2 Mismatched Transplantation Caused by a Combined CD8 Response Directed Against HLA-A2 and a CD4 Response Recognizing an HLA-A2 Derived Peptide in HLA-DR1 Blood, 2006, 108, 5164-5164.	1.4	0
140	ATP Dependent Interferon Responsive (ADIR) Gene Encodes an Activation Induced Minor Histocompatibility Antigen Recognized on Multiple Myeloma by CD8+ T Cells Blood, 2006, 108, 549-549.	1.4	0
141	Alloreactivity of Virus Specific T-Cells Blood, 2008, 112, 3249-3249.	1.4	Ο
142	Recombination of Endogenous TCR Chains with Retrovirally Introduced TCR Chains Can Result in Mixed T Cell Receptor Dimers Harbouring Harmful Alloreactivity. Blood, 2008, 112, 823-823.	1.4	0
143	Leukemic Blasts Acting as Host Antigen Presenting Cells Trigger a Combined CD4 and CD8 Allo-Immune Response Directed against Mismatched HLA Class I. Blood, 2008, 112, 4607-4607.	1.4	0
144	Optimization of the HA-1-Specific T Cell Receptor for Gene Therapy of Hematological Malignancies Blood, 2009, 114, 4093-4093.	1.4	0

#	Article	IF	CITATIONS
145	Extracellular Domains of CD8a and β Subunits Are Required and Sufficient for HLA Class I Restricted Helper Activity of TCR-Engineered CD4+ T Cells Blood, 2009, 114, 3574-3574.	1.4	0
146	Generation of CMV Specific T Cells From CMV Seronegative Donors by T Cell Receptor RNA Transfer Blood, 2009, 114, 3577-3577.	1.4	0
147	Occurrence of T Cells Specific for the Aspergillus Proteins Crf1 and Catalase1 in Patients Recovering From Invasive Aspergillosis. Blood, 2011, 118, 3008-3008.	1.4	0
148	HLA-Peptidomics and the Identification of Clinical Relevant Minor Histocompatibility Antigens,. Blood, 2011, 118, 4038-4038.	1.4	0
149	Imprint Of Early CMV Reactivation On The Reconstituting T-Lymphocyte Compartment One and Two Year After Hematopoietic Stem Cell Transplantation. Blood, 2013, 122, 3295-3295.	1.4	0
150	Functional Evaluation of T-Cells Generated from WT1-TCR Transduced Human Hematopoietic Stem Cells Using the OP9-DL1 Coculture System. Blood, 2014, 124, 2152-2152.	1.4	0
151	High-Affinity CD20-Specific T-Cell Receptors Suitable for Adoptive Immunotherapy in the Treatment of CD20low B-Cell Malignancies. Blood, 2014, 124, 3837-3837.	1.4	0
152	Abstract LB-084: Go-TCRâ,"¢: Inducible MyD88/CD40 (iMC) enhances proliferation and survival of tumor-specific TCR-modified T cells, increasing anti-tumor efficacy. , 2016, , .		0
153	Abstract B078: GoTCR: Inducible MyD88/CD40 (iMC) enhances proliferation and survival of tumor-specific TCR-modified T cells and improves antitumor efficacy in myeloma. , 2016, , .		0
154	Abstract B002: TLR7/8-matured dendritic cells for therapeutic vaccination in AML: Results of a clinical Phase I/II trial. , 2016, , .		0
155	Abstract 3745: Dual-switch TCR: A two-ligand system to control PRAME TCR-modified T cell proliferation and death using inducible MyD88/CD40 and caspase-9. , 2017, , .		0
156	Detection of clinically relevant T-cell receptors requires tailored approaches, and TCR gene therapy carries inherent risks. Translational Cancer Research, 2017, 6, S1118-S1120.	1.0	0
157	Abstract A038: Effective rerouting of NK cell cytotoxicity against B-cell malignancies upon TCR gene transfer. , 2019, , .		0