List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/631962/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: Update of a living systematic review and meta-analysis. PLoS Medicine, 2022, 19, e1003987.	8.4	44
2	Outbreaks of publications about emerging infectious diseases: the case of SARS-CoV-2 and Zika virus. BMC Medical Research Methodology, 2021, 21, 50.	3.1	8
3	Hall-magnetohydrodynamic waves in flowing ideal incompressible solar-wind plasmas: reconsidered. Astrophysics and Space Science, 2020, 365, 1.	1.4	1
4	How Rotating Solar Atmospheric Jets Become Kelvin–Helmholtz Unstable. Frontiers in Astronomy and Space Sciences, 2019, 6, .	2.8	2
5	Kinematics and Energetics of the EUV Waves on 11 April 2013. Solar Physics, 2019, 294, 1.	2.5	8
6	Can High-Mode Magnetohydrodynamic Waves Propagating in a Spinning Macrospicule Be Unstable Due to the Kelvin–Helmholtz Instability?. Solar Physics, 2019, 294, 1.	2.5	4
7	Kelvin–Helmholtz Instability in a Cool Solar Jet in the Framework of Hall Magnetohydrodynamics: A Case Study. Solar Physics, 2018, 293, 1.	2.5	1
8	Solar jet on 2014 April 16 modeled by Kelvin–Helmholtz instability. New Astronomy, 2018, 63, 75-87.	1.8	7
9	Kelvin–Helmholtz instability in a twisting solar polar coronal hole jet observed by SDO/AIA. Advances in Space Research, 2018, 61, 628-638.	2.6	13
10	High mode magnetohydrodynamic waves propagation in a twisted rotating jet emerging from a filament eruption. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5505-5513.	4.4	6
11	Can Rotating Hot Plasma Jets In The Solar Corona Become Unstable?. , 2018, , .		0
12	Investigation of recurrent EUV jets from highly dynamic magnetic field region. Astrophysics and Space Science, 2017, 362, 1.	1.4	13
13	Modeling Kelvin–Helmholtz Instability in Soft X-Ray Solar Jets. Advances in Astronomy, 2017, 2017, 1-18.	1.1	3
14	Kelvin–Helmholtz instability in coronal mass ejections and solar surges. AIP Conference Proceedings, 2016, , .	0.4	0
15	Kelvin–Helmholtz instability in an active region jet observed with Hinode. Astrophysics and Space Science, 2016, 361, 1.	1.4	16
16	Kelvin–Helmholtz instability in solar cool surges. Advances in Space Research, 2015, 56, 2727-2737.	2.6	17
17	Kelvin-Helmholtz instability in coronal mass ejecta in the lower corona. Astronomy and Astrophysics, 2015, 574, A55.	5.1	14
18	On Modeling the Kelvin–Helmholtz Instability in Solar Atmosphere. Journal of Astrophysics and Astronomy, 2015, 36, 233-254.	1.0	18

#	Article	IF	CITATIONS
19	STABILITY OF ROTATING MAGNETIZED JETS IN THE SOLAR ATMOSPHERE. I. KELVIN–HELMHOLTZ INSTABILITY. Astrophysical Journal, 2015, 813, 123.	4.5	63
20	Kelvin–Helmholtz instability of magnetohydrodynamic waves propagating on solar surges. Astrophysics and Space Science, 2015, 356, 231-240.	1.4	17
21	Kelvin-Helmholtz instability of twisted magnetic flux tubes in the solar wind. Astronomy and Astrophysics, 2014, 561, A62.	5.1	36
22	Fast magnetohydrodynamic oscillation of longitudinally inhomogeneous prominence threads: an analogue with quantum harmonic oscillator. Astronomy and Astrophysics, 2014, 565, A35.	5.1	3
23	Excitonic and vibronic spectra of Frenkel excitons in a two-dimensional simple lattice. Chemical Physics, 2013, 410, 71-80.	1.9	6
24	Coupling of charge-transfer excitons, Frenkel excitons, and vibrations in a two-dimensional quadratic lattice. Chemical Physics, 2013, 423, 127-134.	1.9	2
25	Kelvin-Helmholtz instability of kink waves in photospheric, chromospheric, and X-ray solar jets. , 2013, , .		6
26	Magnetohydrodynamic waves and their stability status in solar spicules. Astronomy and Astrophysics, 2012, 537, A124.	5.1	23
27	Kelvin-Helmholtz instability of kink waves in photospheric twisted flux tubes. Astronomy and Astrophysics, 2012, 547, A14.	5.1	20
28	Observation of standing kink waves in solar spicules. Astrophysics and Space Science, 2012, 337, 33-37.	1.4	23
29	Solar Spicules: Recent Challenges in Observations and Theory. , 2011, , .		6
30	Mixing of Frenkel and Charge-transfer Excitons in One-component Molecular Stacks. , 2010, , .		1
31	Hall-magnetohydrodynamic waves in flowing ideal incompressible solar-wind plasmas. Plasma Physics and Controlled Fusion, 2010, 52, 065008.	2.1	6
32	Pre- and post-processing of data for simulation of gyrotrons by the GYREOSS software package. Journal of Physics: Conference Series, 2010, 207, 012032.	0.4	4
33	MHD waves and instabilities in flowing solar flux-tube plasmas in the framework of Hall magnetohydrodynamics. European Physical Journal D, 2009, 55, 127-137.	1.3	8
34	Combination bands in vibronic spectra of molecular crystals. Chemical Physics, 2008, 352, 185-196.	1.9	5
35	Waves and stability of flowing solar wind structures in the framework of the Hall magnetohydrodynamics. AIP Conference Proceedings, 2008, , .	0.4	2
36	Model of a stationary microwave argon discharge at atmospheric pressure. AIP Conference Proceedings, 2008, , .	0.4	1

#	Article	IF	CITATIONS
37	Surface wave propagation characteristics in atmospheric pressure plasma column. Journal of Physics: Conference Series, 2007, 63, 012023.	0.4	1
38	Vibronic Spectra of Mixed Frenkel and Charge-Transfer Excitons. AIP Conference Proceedings, 2007, , .	0.4	0
39	Vibronic approach in the theory of the excitonic spectra of molecular crystals. Physical Review B, 2007, 75, .	3.2	15
40	Modelling of microwave sustained capillary plasma columns at atmospheric pressure. Journal of Physics: Conference Series, 2006, 44, 110-115.	0.4	3
41	Parameter study on Kelvin–Helmholtz instability in solar wind type flowing structures. Proceedings of the International Astronomical Union, 2006, 2, 309.	0.0	Ο
42	Excitonic and vibronic structure of absorption spectra of Me-PTCDI and PTCDA crystals. Chemical Physics, 2006, 321, 223-231.	1.9	8
43	Vibronic spectra of mixed Frenkel and charge transfer excitons. Physical Review B, 2006, 74, .	3.2	11
44	Surface wave propagation in an ideal Hall-magnetohydrodynamic plasma jet in flowing environment. Physics of Plasmas, 2004, 11, 4904-4910.	1.9	1
45	Self-Consistent Modelling of Argon Microwave Discharge Sustained by Electromagnetic Wave in Dipole Mode. European Physical Journal D, 2004, 54, 211-223.	0.4	1
46	Ion flux's pressure dependence in an asymmetric capacitively coupled rf discharge in NF3. Open Physics, 2004, 2, 1-11.	1.7	3
47	Hall-magnetohydrodynamic surface waves in solar wind flow-structures. New Journal of Physics, 2004, 6, 14-14.	2.9	4
48	Surface wave propagation in steady ideal Hall-magnetohydrodynamic magnetic slabs. Physics of Plasmas, 2003, 10, 4463-4471.	1.9	10
49	Oblique propagation of surface waves in an ideal Hall-magnetohydrodynamic finite β plasma slab. Physics of Plasmas, 2003, 10, 484-494.	1.9	4
50	Fast Surface Waves Obliquely Propagating in a Hall-Magnetohydrodynamic Low-Î ² Plasma Layer. Contributions To Plasma Physics, 2000, 40, 569-579.	1.1	4
51	Populations of excited atomic states along argon surface-wave plasma columns at low and intermediate pressures. Journal of Applied Physics, 2000, 87, 7652-7659.	2.5	24
52	Nonprobe radio-frequency plasma diagnostics method based on the power balance in an asymmetric capacitively coupled discharge. Journal of Applied Physics, 2000, 87, 3263-3269.	2.5	9
53	Fast Surface Waves Obliquely Propagating in a Hall-Magnetohydrodynamic Low- Plasma Layer. Contributions To Plasma Physics, 2000, 40, 569-579.	1.1	1
54	Macroscopic model for the energy balance of an asymmetric capacitively coupled rf discharge. Journal Physics D: Applied Physics, 1999, 32, 3019-3024.	2.8	7

#	Article	IF	CITATIONS
55	Self-consistent axial modeling of surface-wave-produced discharges at low and intermediate pressures. Physical Review E, 1999, 60, 875-886.	2.1	39
56	Propagation of fast surface waves in an ideal Hall-magnetohydrodynamic plasma slab. Physics of Plasmas, 1999, 6, 2340-2348.	1.9	8
57	Effects of nonlocal electron kinetics and transition from α to γ regime in an RF capacitive discharge in nitrogen. IEEE Transactions on Plasma Science, 1998, 26, 167-174.	1.3	8
58	Modeling of an axially inhomogeneous microwave argon plasma column at a moderate pressure. Journal of Applied Physics, 1998, 84, 147-153.	2.5	23
59	Dispersion of dipolar electromagnetic waves in a radially inhomogeneous axially magnetized plasma column. Journal of Plasma Physics, 1997, 58, 633-646.	2.1	5
60	Self-consistent kinetic model of a surface-wave-sustained discharge in nitrogen. Journal Physics D: Applied Physics, 1997, 30, 2663-2676.	2.8	39
61	Conditions for sustaining low-pressure plasma columns by travelling electromagnetic UHF waves. Physica Scripta, 1997, 56, 381-387.	2.5	4
62	Axial distributions of metastable atoms and charged particles in an ultrahigh frequency argon plasma column at moderate pressures. Journal of Applied Physics, 1996, 79, 3848.	2.5	3
63	MHD surface waves in a complex (longitudinal + sheared) magnetic field. Solar Physics, 1996, 165, 99-114.	2.5	7
64	Fast surface waves in an ideal Hallâ€magnetohydrodynamic plasma slab. Physics of Plasmas, 1996, 3, 4346-4354.	1.9	17
65	Leaky electromagnetic wave resonances of a plasma sphere. Physics of Plasmas, 1996, 3, 3540-3544.	1.9	2
66	Axial structure of low-pressure high-frequency discharges sustained by travelling electromagnetic surface waves. Physics Reports, 1995, 255, 79-201.	25.6	89
67	Comment on â€~â€~Alfvén â€~resonance' reconsidered: Exact equations for wave propagation across a cold inhomogeneous plasma'' [Phys. Plasmas 1, 3523 (1994)]. Physics of Plasmas, 1995, 2, 3547-3549.	1.9	9
68	Axial structure of a shielded axially magnetized plasma column sustained by a dipolar electromagnetic mode. Plasma Physics and Controlled Fusion, 1994, 36, 1355-1370.	2.1	4
69	Method for computing the attenuation coefficient of electromagnetic waves in anisotropic plasma columns. Physics of Plasmas, 1994, 1, 3734-3741.	1.9	4
70	High-frequency surface waves on a toroidal isotropic plasma. Plasma Physics and Controlled Fusion, 1993, 35, 1787-1791.	2.1	5
71	Axial structure of a shielded plasma column sustained by a dipolar electromagnetic wave. Journal Physics D: Applied Physics, 1993, 26, 1601-1610.	2.8	5
72	Theory of Low-Pressure Plasma Columns Produced by Electromagnetic Waves in the Presence of a Constant Axial Magnetic Field. NATO ASI Series Series B: Physics, 1993, , 95-104.	0.2	0

#	Article	IF	CITATIONS
73	Modelling of a plasma column sustained by a travelling circularly polarized electromagnetic wave (<i>m</i> = 1 mode) in the presence of a constant axial magnetic field. Journal of Plasma Physics, 1992, 48, 37-57.	2.1	6
74	Lowâ€pressure plasma columns sustained by traveling electromagnetic surface waves in the dipolar (m=1) mode. Journal of Applied Physics, 1992, 71, 1026-1028.	2.5	7
75	Chromospheric and coronal heating due to the dissipation of fast magnetoacoustic waves. Solar Physics, 1992, 140, 7-17.	2.5	4
76	Theoretical study of the influence of a metal enclosure on the parameters of a plasma column sustained by a travelling electromagnetic surface wave. Physica Scripta, 1991, 43, 68-73.	2.5	19
77	Theoretical study of a plasma column sustained by an electromagnetic surface wave in the dipolar mode. Journal of Plasma Physics, 1991, 45, 137-152.	2.1	23
78	Modeling of a plasma column produced and sustained by a traveling electromagnetic wave in the presence of a constant axial magnetic field. Physical Review A, 1991, 44, 2625-2640.	2.5	29
79	Modeling of a plasma column produced and sustained by a traveling electromagnetic surface wave. Journal of Applied Physics, 1989, 66, 1641-1650.	2.5	32
80	Dark envelope solitons of fast magnetosonic surface waves in solar flux tubes. Solar Physics, 1988, 115, 17-32.	2.5	14
81	Nonlinear surface waves on a plasma layer. Physical Review A, 1988, 38, 6304-6315.	2.5	5
82	An experimental study of the axial structure of a gas discharge sustained by a surface electromagnetic wave in the presence of a uniform external magnetic field. Journal Physics D: Applied Physics, 1988, 21, 1371-1376.	2.8	8
83	Theoretical study of a plasma column sustained by a guided electrostatic wave in the presence of a constant axial magnetic field. Journal of Applied Physics, 1987, 62, 2713-2721.	2.5	16
84	Chromospheric and Coronal Heating Due to the Radiation and Collisional Damping of Fast Magnetosonic Surface Waves. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1987, 42, 1443-1450.	1.5	6
85	Comments on Surface Plasma Wave Solitons. Beitrage Aus Der Plasmaphysik, 1987, 27, 85-86.	0.1	0
86	Axial structure of a plasma column produced by a largeâ€amplitude electromagnetic surface wave. Journal of Applied Physics, 1986, 59, 1466-1472.	2.5	58
87	Nonlinear surface waves on a thin plasma layer. Journal of Plasma Physics, 1986, 36, 143-150.	2.1	5
88	Three-wave interaction in a cold plasma column. Journal of Plasma Physics, 1985, 34, 427-434.	2.1	7
89	Solitary surface waves on a thin plasma layer. Plasma Physics and Controlled Fusion, 1984, 26, 813-819.	2.1	13
90	Surface Plasma Wave Solitons. Beitrage Aus Der Plasmaphysik, 1983, 23, 621-623.	0.1	19

#	Article	IF	CITATIONS
91	Comment on â€~â€~Electromagnetic decay into a surface plasma wave and an ion acoustic surface wave in a semiâ€infinite plasma''. Journal of Applied Physics, 1983, 54, 2837-2837.	2.5	1
92	Propagation of a largeâ€amplitude surface wave in a plasma column sustained by the wave. Journal of Applied Physics, 1983, 54, 3049-3052.	2.5	37
93	Nonlinear interaction of electrostatic surface waves in a semi-infinite plasma. Part 1. Derivation of the coupled mode equations. Journal of Plasma Physics, 1981, 26, 217-230.	2.1	15
94	Nonlinear interaction of electrostatic surface waves in a semi-infinite plasma. Part 2. Time-dependent solutions to the coupled mode equations. Journal of Plasma Physics, 1981, 26, 231-252.	2.1	5
95	Nonlinear electrostatic surface waves in a semi-infinite plasma. Physics Letters, Section A: General, Atomic and Solid State Physics, 1981, 86, 414-416.	2.1	9
96	Structure of the electric field of low-frequency surface waves in a semi-infinite plasma. Plasma Physics, 1979, 21, 575-581.	0.9	4
97	Parametric decay of non-ducted whistler-mode signal. Journal of Plasma Physics, 1979, 22, 377-384.	2.1	7
98	Modulation of Ion yclotron Turbulence by Lowâ€Frequency Perturbations in a Magnetized Plasma. Beitrage Aus Der Plasmaphysik, 1978, 18, 119-123.	0.1	1
99	Ion acoustic waves in a thin radially inhomogeneous plasma column. Journal of Physics A, 1978, 11, L63-L67.	1.6	1
100	Surface waves in a homogeneous plasma sharply bounded by a dielectric. Plasma Physics, 1978, 20, 1049-1073.	0.9	70
101	Stimulated ion surface waves on a semi-infinite plasma. Plasma Physics, 1978, 20, 133-138.	0.9	4
102	Saw-tooth shaped lower hybrid waves. Journal Physics D: Applied Physics, 1978, 11, L103-L105.	2.8	2
103	Study of Parametric Instabilities in a Thin Radially Inhomogeneous Plasma Column. Physica Scripta, 1978, 18, 346-350.	2.5	6
104	Solitary surface waves. Journal of Plasma Physics, 1978, 20, 183-188.	2.1	59
105	High-frequency Surface Waves in a Current Carrying Hot Plasma Column. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1978, 33, 261-268.	1.5	8
106	Excitation of Low-Frequency Ion Acoustic Perturbations in the Presence of Stationary Lower Hybrid Turbulence. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1978, 33, 121-123.	1.5	0
107	Kinetic theory of surface wave propagation along a hot plasma column. Journal of Plasma Physics, 1976, 16, 47-55.	2.1	6
108	Interaction of a warm plasma column with high-frequency electric fields: purely growing parametric instability. Journal of Physics A: Mathematical Nuclear and General, 1974, 7, 2223-2235.	1.0	6

#	Article	IF	CITATIONS
109	Low-frequency surface waves on a semi-bounded non-isothermal plasma. European Physical Journal A, 1974, 269, 215-220.	2.5	8
110	Low-frequency surface waves on bounded warm magneto-active plasma. Journal of Plasma Physics, 1974, 11, 311-323.	2.1	5
111	Ion surface waves on bounded warm plasma. Physica, 1973, 63, 182-190.	0.9	16
112	The Instability of Inhomogeneous Plasma Streams. Radio Science, 1972, 7, 857-870.	1.6	0
113	Longitudinal resonances of plasma surface waves in noble gases. Electronics Letters, 1967, 3, 253.	1.0	6
114	Resonance Absorption of Electromagnetic Power by Weakly Ionized Gasâ€. International Journal of Electronics, 1966, 20, 517-524.	1.4	0