Charles Patrick Collier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6318822/publications.pdf

Version: 2024-02-01

113 papers 10,799 citations

38 h-index 103 g-index

129 all docs

129 docs citations

129 times ranked 10695 citing authors

#	Article	IF	CITATIONS
1	Droplet Evaporation on Hot Micro-Structured Superhydrophobic Surfaces: Analysis of Evaporation from Droplet Cap and Base Surfaces. International Journal of Heat and Mass Transfer, 2022, 185, 122314.	2.5	15
2	Ion Pairing and Molecular Orientation at Liquid/Liquid Interfaces: Self-Assembly and Function. Journal of Physical Chemistry B, 2022, 126, 2316-2323.	1.2	12
3	Squeezing Out Interfacial Solvation: The Role of Hydrogen-Bonding in the Structural and Orientational Freedom of Molecular Self-Assembly. Journal of Physical Chemistry Letters, 2022, 13, 2273-2280.	2.1	7
4	Disentangling Memristive and Memcapacitive Effects in Droplet Interface Bilayers Using Dynamic Impedance Spectroscopy. Advanced Electronic Materials, 2022, 8, .	2.6	9
5	Gold Ion Beam Milled Gold Zero-Mode Waveguides. Nanomaterials, 2022, 12, 1755.	1.9	2
6	Absolute quantitation of propranolol from 200â€Î¼m regions of mouse brain and liver thin tissues using laser ablationâ€dropletProbeâ€mass spectrometry. Rapid Communications in Mass Spectrometry, 2021, 35, e9010.	0.7	4
7	Photoluminescence Enhancement, Blinking Suppression, and Improved Biexciton Quantum Yield of Single Quantum Dots in Zero Mode Waveguides. Journal of Physical Chemistry Letters, 2021, 12, 3303-3311.	2.1	8
8	Harnessing autocatalytic reactions in polymerization and depolymerization. MRS Communications, $2021, 11, 377-390.$	0.8	4
9	lon Pairing Mediates Molecular Organization Across Liquid/Liquid Interfaces. ACS Applied Materials & Interfaces, 2021, 13, 33734-33743.	4.0	13
10	Integrated laser ablationâ€dropletProbeâ€mass spectrometry for absolute drug quantitation, metabolite detection, and distribution in tissue. Rapid Communications in Mass Spectrometry, 2021, 35, e9202.	0.7	0
11	Insight into the Mechanisms Driving the Self-Assembly of Functional Interfaces: Moving from Lipids to Charged Amphiphilic Oligomers. Journal of the American Chemical Society, 2020, 142, 290-299.	6.6	27
12	Macromolecular Crowding Affects Voltage-Dependent Alamethicin Pore Formation in Lipid Bilayer Membranes. Journal of Physical Chemistry B, 2020, 124, 5095-5102.	1.2	7
13	Evaporation of squeezed water droplets between two parallel hydrophobic/superhydrophobic surfaces. Journal of Colloid and Interface Science, 2020, 576, 127-138.	5.0	13
14	Mixed metal zero-mode guides (ZMWs) for tunable fluorescence enhancement. Nanoscale Advances, 2020, 2, 1894-1903.	2.2	7
15	Electrophysiological interrogation of asymmetric droplet interface bilayers reveals surface-bound alamethicin induces lipid flip-flop. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 335-343.	1.4	35
16	Peptide-Induced Lipid Flip-Flop in Asymmetric Liposomes Measured by Small Angle Neutron Scattering. Langmuir, 2019, 35, 11735-11744.	1.6	41
17	Dynamical nonlinear memory capacitance in biomimetic membranes. Nature Communications, 2019, 10, 3239.	5.8	51
18	Deciphering Melatonin-Stabilized Phase Separation in Phospholipid Bilayers. Langmuir, 2019, 35, 12236-12245.	1.6	25

#	Article	IF	Citations
19	Loss of carotenoids from membranes of Pantoea sp. YR343 results in altered lipid composition and changes in membrane biophysical properties. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1338-1345.	1.4	14
20	Self-Stabilizing Transpiration in Synthetic Leaves. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13768-13776.	4.0	14
21	Geometryâ€Dependent Nonequilibrium Steadyâ€State Diffusion and Adsorption of Lipid Vesicles in Micropillar Arrays. Advanced Materials Interfaces, 2019, 6, 1900054.	1.9	2
22	Assembly and Characterization of Biomolecular Memristors Consisting of Ion Channel-doped Lipid Membranes. Journal of Visualized Experiments, 2019, , .	0.2	6
23	Evaporation-induced monolayer compression improves droplet interface bilayer formation using unsaturated lipids. Biomicrofluidics, 2018, 12, 024101.	1.2	21
24	Macromolecular Crowding Induces Spatial Correlations That Control Gene Expression Bursting Patterns. ACS Synthetic Biology, 2018, 7, 1251-1258.	1.9	34
25	Memristive Ion Channel-Doped Biomembranes as Synaptic Mimics. ACS Nano, 2018, 12, 4702-4711.	7.3	107
26	A Soft-Matter Biomolecular Memristor Synapse for Neuromorphic Systems. , 2018, , .		6
27	Response of a Memristive Biomembrane and Demonstration of Potential Use in Online Learning. , 2018, , .		4
28	Biomimetic, Soft-Material Synapse for Neuromorphic Computing: from Device to Network., 2018,,.		14
29	Capacitive Detection of Low-Enthalpy, Higher-Order Phase Transitions in Synthetic and Natural Lipid Membranes. Biophysical Journal, 2018, 114, 551a-552a.	0.2	o
30	Passive Antifrosting Surfaces Using Microscopic Ice Patterns. ACS Applied Materials & Emp; Interfaces, 2018, 10, 32874-32884.	4.0	61
31	Flexible approach to vibrational sum-frequency generation using shaped near-infrared light. Optics Letters, 2018, 43, 2038.	1.7	34
32	Low-Enthalpy Phase Transitions Yield Entropy-Driven Lateral Reorganization and Phase Separation in Synthetic and Natural Multi-Component DIB Membranes. Biophysical Journal, 2017, 112, 84a.	0.2	O
33	Capacitive Detection of Low-Enthalpy, Higher-Order Phase Transitions in Synthetic and Natural Composition Lipid Membranes. Langmuir, 2017, 33, 10016-10026.	1.6	27
34	Tuning Superhydrophobic Nanostructures To Enhance Jumping-Droplet Condensation. ACS Nano, 2017, 11, 8499-8510.	7.3	185
35	Synthetic Biology in Aqueous Compartments at the Micro- and Nanoscale. MRS Advances, 2017, 2, 2427-2433.	0.5	5
36	Real-Time Sensing of Single-Ligand Delivery with Nanoaperture-Integrated Microfluidic Devices. ACS Omega, 2017, 2, 3858-3867.	1.6	9

#	Article	IF	CITATIONS
37	Synapse-Inspired Variable Conductance in Biomembranes: A Preliminary Study., 2017,,.		O
38	Dynamic Defrosting on Scalable Superhydrophobic Surfaces. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24308-24317.	4.0	42
39	Resource Sharing Controls Gene Expression Bursting. ACS Synthetic Biology, 2017, 6, 334-343.	1.9	30
40	Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays. Lab on A Chip, 2016, 16, 3576-3588.	3.1	39
41	A Comparison of Single-Molecule Emission in Aluminum and Gold Zero-Mode Waveguides. Journal of Physical Chemistry A, 2016, 120, 6719-6727.	1.1	22
42	Controlling condensation and frost growth with chemical micropatterns. Scientific Reports, 2016, 6, 19131.	1.6	111
43	Sealable Femtoliter Chamber Arrays for Cell-free Biology. Journal of Visualized Experiments, 2015, , .	0.2	6
44	Adsorption Kinetics Dictate Monolayer Self-Assembly for Both Lipid-In and Lipid-Out Approaches to Droplet Interface Bilayer Formation. Langmuir, 2015, 31, 12883-12893.	1.6	58
45	Control of Membrane Permeability in Air-Stable Droplet Interface Bilayers. Langmuir, 2015, 31, 4224-4231.	1.6	8
46	Self-propelled sweeping removal of dropwise condensate. Applied Physics Letters, 2015, 106, .	1.5	95
47	Direct in situ measurement of specific capacitance, monolayer tension, and bilayer tension in a droplet interface bilayer. Soft Matter, 2015, 11, 7592-7605.	1.2	85
48	Bilayer membrane interactions with nanofabricated scaffolds. Chemistry and Physics of Lipids, 2015, 192, 75-86.	1.5	5
49	Length Scale Selects Directionality of Droplets on Vibrating Pillar Ratchet. Advanced Materials Interfaces, 2014, 1, 1400337.	1.9	16
50	Dynamic morphologies of microscale droplet interface bilayers. Soft Matter, 2014, 10, 2530.	1.2	23
51	Air-stable droplet interface bilayers on oil-infused surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7588-7593.	3.3	125
52	Asymmetric Wettability of Nanostructures Directs Leidenfrost Droplets. ACS Nano, 2014, 8, 860-867.	7.3	72
53	The effect of retinal pigment epithelial cell patch size on growth factor expression. Biomaterials, 2014, 35, 3999-4004.	5.7	13
54	Length scale of Leidenfrost ratchet switches droplet directionality. Nanoscale, 2014, 6, 9293-9299.	2.8	35

#	Article	IF	Citations
55	Dynamic Defrosting on Nanostructured Superhydrophobic Surfaces. Langmuir, 2013, 29, 9516-9524.	1.6	158
56	Dewetting Transitions on Superhydrophobic Surfaces: When Are Wenzel Drops Reversible?. Journal of Physical Chemistry C, 2013, 117, 18084-18090.	1.5	41
57	Bilayer self-assembly on a hydrophilic, deterministically nanopatterned surface. Nano Research, 2013, 6, 784-794.	5.8	3
58	Developing in vitro models of the sub-retinal microenvironment. , 2013, , .		0
59	Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces. ACS Nano, 2013, 7, 1618-1627.	7.3	485
60	Single-molecule mobility in confined and crowded femtolitre chambers. Lab on A Chip, 2013, 13, 877.	3.1	18
61	Aqueous two-phase microdroplets with reversible phase transitions. Lab on A Chip, 2013, 13, 1295.	3.1	23
62	Probing Cell-Free Gene Expression Noise in Femtoliter Volumes. ACS Synthetic Biology, 2013, 2, 497-505.	1.9	42
63	Evaporation-Induced Buckling and Fission of Microscale Droplet Interface Bilayers. Journal of the American Chemical Society, 2013, 135, 5545-5548.	6.6	23
64	Monodisperse alginate microgel formation in a three-dimensional microfluidic droplet generator. Biomicrofluidics, 2012, 6, 44108.	1.2	38
65	Towards the World Smallest Chemical Reactors: On-Demand Generation and Fusion of Femtoliter Aqueous Droplets. Biophysical Journal, 2011, 100, 607a.	0.2	O
66	Interfacial Tension Controlled Fusion of Individual Femtoliter Droplets and Triggering of Confined Chemical Reactions on Demand. Biophysical Journal, 2011, 100, 522a.	0.2	0
67	Micro/nanofabricated environments for synthetic biology. Current Opinion in Biotechnology, 2011, 22, 516-526.	3.3	15
68	Fully inverted single-digit nanometer domains in ferroelectric films. Applied Physics Letters, 2010, 96, .	1.5	17
69	Interfacial tension controlled fusion of individual femtolitre droplets and triggering of confined chemical reactions on demand. Lab on A Chip, 2010, 10, 3373.	3.1	9
70	On-demand generation of monodisperse femtolitre droplets by shape-induced shear. Lab on A Chip, 2010, 10, 2688.	3.1	29
71	Shear-Driven Redistribution of Surfactant Affects Enzyme Activity in Well-Mixed Femtoliter Droplets. Analytical Chemistry, 2009, 81, 4922-4928.	3.2	29
72	High Aspect Ratio Silicon Dioxide-Coated Single-Walled Carbon Nanotube Scanning Probe Nanoelectrodes. Journal of Physical Chemistry C, 2009, 113, 6815-6820.	1.5	10

#	Article	IF	Citations
73	Fast Mixing and Reaction Initiation Control of Single-Enzyme Kinetics in Confined Volumes. Langmuir, 2008, 24, 4439-4442.	1.6	38
74	Nanopencil as a wear-tolerant probe for ultrahigh density data storage. Applied Physics Letters, 2008, 93, .	1.5	22
75	Amplitude Response of Single-Wall Carbon Nanotube Probes during Tapping Mode Atomic Force Microscopy:  Modeling and Experiment. Nano Letters, 2006, 6, 1669-1673.	4.5	25
76	Carbon nanotube tips for scanning probe microscopy. , 2006, , 295-313.		4
77	Noncovalent Functionalization of Single-Walled Carbon Nanotubes with Water-Soluble Porphyrins. Journal of Physical Chemistry B, 2005, 109, 7605-7609.	1.2	180
78	Two-Component Membrane Lithography via Lipid Backfilling. ChemPhysChem, 2005, 6, 423-426.	1.0	24
79	Mechanisms of Single-Walled Carbon Nanotube Probeâ°'Sample Multistability in Tapping Mode AFM Imaging. Journal of Physical Chemistry B, 2005, 109, 11493-11500.	1.2	25
80	Electrowetting in Carbon Nanotubes. Science, 2005, 310, 1480-1483.	6.0	126
81	The Role of Microfilaments in Early Meiotic Maturation of Mouse Oocytes. Microscopy and Microanalysis, 2005, 11, 146-153.	0.2	28
82	Influence of Elastic Deformation on Single-Wall Carbon Nanotube Atomic Force Microscopy Probe Resolution. Journal of Physical Chemistry B, 2004, 108, 13613-13618.	1.2	37
83	Correlating AFM Probe Morphology to Image Resolution for Single-Wall Carbon Nanotube Tips. Nano Letters, 2004, 4, 725-731.	4.5	73
84	Nanoelectrode Scanning Probes from Fluorocarbon-Coated Single-Walled Carbon Nanotubes. Nano Letters, 2004, 4, 1873-1879.	4.5	45
85	Surfactant Activated Dip-Pen Nanolithography. Nano Letters, 2004, 4, 2171-2177.	4.5	48
86	Dip-Pen Nanolithography of Reactive Alkoxysilanes on Glass. Journal of the American Chemical Society, 2003, 125, 12096-12097.	6.6	104
87	The Structure of a Tetraazapentacene Molecular Monolayer. Journal of Physical Chemistry B, 2002, 106, 1833-1839.	1.2	13
88	Photochemical Response of Electronically Reconfigurable Molecule-Based Switching Tunnel Junctions. ChemPhysChem, 2002, 3, 458.	1.0	13
89	Two-Dimensional Molecular Electronics Circuits. ChemPhysChem, 2002, 3, 519-525.	1.0	520
90	Molecular-Based Electronically Switchable Tunnel Junction Devices. Journal of the American Chemical Society, 2001, 123, 12632-12641.	6.6	294

#	Article	IF	Citations
91	Switching Devices Based on Interlocked Molecules. Accounts of Chemical Research, 2001, 34, 433-444.	7.6	770
92	A [2]Catenane-Based Solid State Electronically Reconfigurable Switch. Science, 2000, 289, 1172-1175.	6.0	1,326
93	Fabrication and Transport Properties of Single-Molecule-Thick Electrochemical Junctions. Journal of the American Chemical Society, 2000, 122, 5831-5840.	6.6	167
94	The Dielectric Function of Silver Nanoparticle Langmuir Monolayers Compressed through the Metal Insulator Transition. Journal of the American Chemical Society, 2000, 122, 4077-4083.	6.6	63
95	Architectonic Quantum Dot Solids. Accounts of Chemical Research, 1999, 32, 415-423.	7.6	349
96	Electronically Configurable Molecular-Based Logic Gates. Science, 1999, 285, 391-394.	6.0	1,474
97	Positive and Negative Contrast Lithography on Silver Quantum Dot Monolayers. Journal of Physical Chemistry B, 1999, 103, 3524-3528.	1.2	17
98	The transition from localized to collective electronic states in a silver quantum dots monolayer examined by nonlinear optical response. Chemical Physics Letters, 1998, 291, 453-458.	1.2	46
99	Cooperative Phenomena in Artificial Solids Made from Silver Quantum Dots:Â The Importance of Classical Coupling. Journal of Physical Chemistry B, 1998, 102, 3425-3430.	1.2	103
100	Networks of Quantum Nanodots:Â The Role of Disorder in Modifying Electronic and Optical Properties. Journal of Physical Chemistry B, 1998, 102, 7727-7734.	1.2	53
101	NANOCRYSTAL SUPERLATTICES. Annual Review of Physical Chemistry, 1998, 49, 371-404.	4.8	687
102	On the ground electronic states of copper silicide and its ions. Journal of Chemical Physics, 1998, 108, 5728-5732.	1.2	16
103	Reversible Metal-Insulator Transition in Ordered Metal Nanocrystal Monolayers Observed by Impedance Spectroscopy. Physical Review Letters, 1998, 80, 3807-3810.	2.9	140
104	Direct Measurement of Water Cluster Concentrations by Infrared Cavity Ringdown Laser Absorption Spectroscopy. Journal of Physical Chemistry A, 1997, 101, 5211-5214.	1.1	218
105	Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition. Science, 1997, 277, 1978-1981.	6.0	814
106	Cavity ringdown laser absorption spectroscopy and timeâ€ofâ€flight mass spectroscopy of jet cooled platinum silicides. Journal of Chemical Physics, 1996, 104, 2782-2788.	1.2	31
107	Infrared cavity ringdown laser absorption spectroscopy (IR-CRLAS). Chemical Physics Letters, 1995, 245, 273-280.	1.2	106
108	Vibrational spectra and assignments for 3,3,4,4-tetrafluorocyclobutene-d0, -d1, and -d2. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1995, 51, 45-63.	2.0	3

#	Article	IF	CITATIONS
109	Cavity ringdown laser absorption spectroscopy and timeâ€ofâ€flight mass spectroscopy of jetâ€cooled gold silicides. Journal of Chemical Physics, 1995, 103, 9187-9192.	1.2	78
110	Cavity ringdown laser absorption spectroscopy and timeâ€ofâ€flight mass spectroscopy of jetâ€cooled silver silicides. Journal of Chemical Physics, 1995, 103, 113-120.	1.2	54
111	Cavity ringdown laser absorption spectroscopy and timeâ€ofâ€flight mass spectroscopy of jetâ€cooled copper silicides. Journal of Chemical Physics, 1995, 102, 5190-5199.	1.2	93
112	Laser-initiated chain reactions and microexplosions in solid solutions of simple alkenes and chlorine. The Journal of Physical Chemistry, 1992, 96, 1288-1293.	2.9	7
113	Self-Organization Controls Expression More than Abundance of Molecular Components of Transcription and Translation in Confined Cell-Free Gene Expression. SSRN Electronic Journal, 0, , .	0.4	0