

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6318693/publications.pdf Version: 2024-02-01

		393982	414034
32	1,133	19	32
papers	citations	h-index	g-index
32	32	32	1220
all docs	docs citations	times ranked	citing authors

LINC FU

#	Article	IF	CITATIONS
1	High energy harvesting performance in flexible piezocomposites by synergistic design of the piezoelectric phase and conductive phase. Journal of Materials Chemistry C, 2022, 10, 8339-8348.	2.7	9
2	Ultrahigh current density and fatigue stability in flexible energy harvester by designing delivery paths. Materials Today Physics, 2021, 19, 100424.	2.9	6
3	Two-Step Regulation Strategy Improving Stress Transfer and Poling Efficiency Boosts Piezoelectric Performance of 0–3 Piezocomposites. ACS Applied Materials & Interfaces, 2021, 13, 41735-41743.	4.0	13
4	High-performance lead-free ferroelectric BZT–BCT and its application in energy fields. Journal of Materials Chemistry C, 2020, 8, 13530-13556.	2.7	42
5	A construction strategy of ferroelectrics by the molten salt method and its application in the energy field. Journal of Materials Chemistry C, 2020, 8, 8704-8731.	2.7	30
6	High piezoelectric properties above 150°C in (Bi0.5Na0.5)TiO3-Based lead-free piezoelectric ceramics. Materials Chemistry and Physics, 2020, 249, 122966.	2.0	5
7	Flexible Piezoelectric Energy Harvester with Extremely High Power Generation Capability by Sandwich Structure Design Strategy. ACS Applied Materials & Interfaces, 2020, 12, 9766-9774.	4.0	52
8	High performance piezocomposites for flexible device application. Nanoscale, 2020, 12, 5175-5185.	2.8	28
9	Monitoring and forecasting the development trends of nanogenerator technology using citation analysis and text mining. Nano Energy, 2020, 71, 104636.	8.2	25
10	High Performance Flexible Piezocomposites Based on a Particle Alignment Strategy. European Journal of Inorganic Chemistry, 2020, 2020, 770-772.	1.0	7
11	Flexible piezoelectric energy harvester with an ultrahigh transduction coefficient by the interconnected skeleton design strategy. Nanoscale, 2020, 12, 13001-13009.	2.8	18
12	Effect of target ferroelectric niobate crystal structure on topochemical processes and product morphology with the Nb2O5 precursor. Journal of Crystal Growth, 2019, 509, 96-102.	0.7	5
13	The alignment of BCZT particles in PDMS boosts the sensitivity and cycling reliability of a flexible piezoelectric touch sensor. Journal of Materials Chemistry C, 2019, 7, 961-967.	2.7	68
14	Large electrocaloric effect near room temperature in lead–free Bi0.5Na0.5TiO3-based ergodic relaxor observed by differential scanning calorimetry. Scripta Materialia, 2019, 171, 10-15.	2.6	19
15	The role of secondary phase in enhancing transduction coefficient of piezoelectric energy harvesting composites. Journal of Materials Chemistry C, 2019, 7, 3479-3485.	2.7	29
16	Topochemical Conversion of (111) BaTiO ₃ Piezoelectric Microplatelets Using Ba ₆ Ti ₁₇ O ₄₀ as the Precursor. Crystal Growth and Design, 2019, 19, 1198-1205.	1.4	5
17	Comparative study of dielectric properties of the PVDF composites filled with spherical and rod-like BaTiO3 derived by molten salt synthesis method. Journal of Materials Science, 2018, 53, 7233-7248.	1.7	37
18	Composition-induced phase evolution and high strain response in Ba(Zn1/3Nb2/3)O3-modified (Bi0.5Na0.5)TiO3-based lead-free ferroelectrics. RSC Advances, 2018, 8, 12269-12275.	1.7	3

Jing Fu

#	Article	IF	CITATIONS
19	Large electric field induced strain in new lead-free binary (Bi1/2Na1/2)TiO3–Ba(Zn1/3Nb2/3)O3 solid solution. Journal of Alloys and Compounds, 2018, 731, 631-635.	2.8	25
20	Boosting energy harvesting performance in (Ba,Ca)(Ti,Zr)O ₃ lead-free perovskites through artificial control of intermediate grain size. Dalton Transactions, 2018, 47, 9257-9266.	1.6	35
21	Advances in leadâ€free highâ€temperature dielectric materials for ceramic capacitor application. IET Nanodielectrics, 2018, 1, 3-16.	2.0	61
22	Regulation of the Ba/Sr Ratio of (Ba,Sr)TiO ₃ and Nanorod Buildâ€Up through a Topochemical Synthesis Method Using BaTi ₂ O ₅ as the Template. European Journal of Inorganic Chemistry, 2018, 2018, 3088-3094.	1.0	7
23	Topochemical build-up of BaTiO ₃ nanorods using BaTi ₂ O ₅ as the template. CrystEngComm, 2017, 19, 1115-1122.	1.3	16
24	Composition-driven phase boundary and its energy harvesting performance of BCZT lead–free piezoelectric ceramic. Journal of the European Ceramic Society, 2017, 37, 2583-2589.	2.8	59
25	Improving Dielectric Properties of PVDF Composites by Employing Surface Modified Strong Polarized BaTiO ₃ Particles Derived by Molten Salt Method. ACS Applied Materials & Interfaces, 2015, 7, 24480-24491.	4.0	283
26	Size dependence of the polarization and dielectric properties of KNbO ₃ nanoparticles. RSC Advances, 2014, 4, 23344-23350.	1.7	25
27	Fabrication and properties of Na0.9K0.1NbO3 nanostructures by molten salt synthesis. Powder Technology, 2013, 246, 144-147.	2.1	19
28	Preparation and Piezoelectricity of <scp>NaNbO₃</scp> Highâ€Đensity Ceramics by Molten Salt Synthesis. Journal of the American Ceramic Society, 2011, 94, 4329-4334.	1.9	41
29	Synthesis and Piezoelectric Properties of KNbO3Ceramics by Molten-Salt Synthetic Method. Japanese Journal of Applied Physics, 2009, 48, 041405.	0.8	14
30	Facile synthesis and high d33 of single-crystalline KNbO3 nanocubes. Chemical Communications, 2008, , 5137.	2.2	40
31	Relaxor behavior of (K0.5Bi0.5)TiO3 ceramics derived from molten salt synthesized single-crystalline nanowires. Applied Physics Letters, 2007, 91, 023118.	1.5	41
32	Synthesis and characterization of lead-free K0.5Bi0.5TiO3 ferroelectrics by sol–gel technique. Journal of Crystal Growth, 2005, 273, 500-503.	0.7	66