Fausto Cargnoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6318294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental and theoretical insight into the mechanism of CO2 cycloaddition to epoxides catalyzed by ammonium ferrates. Journal of CO2 Utilization, 2022, 62, 102062.	3.3	6
2	Unveiling the acetone sensing mechanism by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"> <mml:msub> <mml:mrow> <mml:mi mathvariant="normal">WO </mml:mi </mml:mrow> <mml:mn>3 </mml:mn> </mml:msub> chemiresistors through a joint theory-experiment approach. Electrochimica Acta, 2021, 371, 137611.</mml:math 	2.6	21
3	Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes. Journal of Chemical Theory and Computation, 2020, 16, 1188-1199.	2.3	5
4	Organic Spintronics: A Theoretical Investigation of a Graphene-Porphyrin Based Nanodevice. Magnetochemistry, 2020, 6, 27.	1.0	1
5	A cascade mechanism for a simple reaction: The gas-phase methylation of phenol with methanol. Journal of Catalysis, 2019, 370, 447-460.	3.1	23
6	Unraveling the Degradation Mechanism of FIrpic-Based Blue OLEDs: I. A Theoretical Investigation. Chemistry of Materials, 2019, 31, 2269-2276.	3.2	9
7	Unraveling the Degradation Mechanism in FIrpic-Based Blue OLEDs: II. Trap and Detect Molecules at the Interfaces. Chemistry of Materials, 2019, 31, 2277-2285.	3.2	27
8	The azide–alkyne cycloaddition catalysed by transition metal oxide nanoparticles. New Journal of Chemistry, 2019, 43, 18049-18061.	1.4	3
9	Helium-induced electronic transitions in photo-excited Ba+–Hen exciplexes. Journal of Chemical Physics, 2018, 148, 144302.	1.2	4
10	Electronic Structure and Magnetic Coupling of Pure and Mg-Doped KCuF3. Advances in Condensed Matter Physics, 2018, 2018, 1-10.	0.4	1
11	Magnetic Moments and Electron Transport through Chromium-Based Antiferromagnetic Nanojunctions. Materials, 2018, 11, 2030.	1.3	3
12	Î ² -Diketonate ancillary ligands in heteroleptic iridium complexes: a balance between synthetic advantages and photophysical troubles. Photochemical and Photobiological Sciences, 2018, 17, 1169-1178.	1.6	6
13	Upper limit to the ultimate achievable emission wavelength in near-IR emitting cyclometalated iridium complexes. Photochemical and Photobiological Sciences, 2017, 16, 1220-1223.	1.6	17
14	Dynamics of photoexcited Ba+ cations in 4He nanodroplets. Journal of Chemical Physics, 2016, 144, 094302.	1.2	15
15	Spin-polarized charge transfer induced by transition metal adsorption on graphene. Physica Scripta, 2016, 91, 053007.	1.2	7
16	Spin-filtering in graphene junctions with Ti and Co adsorbates. Chemical Physics, 2016, 478, 91-96.	0.9	5
17	Nearâ€IR Emitting Iridium(III) Complexes with Heteroaromatic βâ€Diketonate Ancillary Ligands for Efficient Solutionâ€Processed OLEDs: Structure–Property Correlations. Angewandte Chemie - International Edition, 2016, 55, 2714-2718.	7.2	126
18	Understanding the Reorientational Dynamics of Solid-State MBH ₄ (M = Li–Cs). Journal of Physical Chemistry C, 2015, 119, 12109-12118.	1.5	6

FAUSTO CARGNONI

#	Article	IF	CITATIONS
19	Spin asymmetric band gap opening in graphene by Fe adsorption. Surface Science, 2015, 634, 62-67.	0.8	16
20	Mapping the complete bonding network in KBH4 using the combined power of powder diffraction and maximum entropy method. Computational and Theoretical Chemistry, 2015, 1053, 245-253.	1.1	7
21	Picosecond solvation dynamics of alkali cations in superfluid <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi mathvariant="normal">He<mml:mprescripts></mml:mprescripts><mml:none /><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:none </mml:mi </mml:mmultiscripts>nanodroplets.</mml:math 	1.1	33
22	Communication: Nucleation of quantized vortex rings in 4He nanodroplets. Journal of Chemical Physics, 2014, 140, 131101.	1.2	29
23	Exciplexes with Ionic Dopants: Stability, Structure, and Experimental Relevance of M+(2P)4Hen (M = Sr,) Tj ETQq1	1.0.7843 1.1	14 rgBT /0v
24	A Theoretical Study on the Rotational Motion and Interactions in the Disordered Phase of MBH ₄ (M = Li, Na, K, Rb, Cs). Journal of Physical Chemistry C, 2013, 117, 2308-2316.	1.5	9
25	Coinage metal exciplexes with helium atoms: a theoretical study of M*(2L)Hen (M = Cu, Ag, Au; L = P,D). Physical Chemistry Chemical Physics, 2013, 15, 18410.	1.3	9
26	Solubility of Metal Atoms in Helium Droplets: Exploring the Effect of the Well Depth Using the Coinage Metals Cu and Ag. Journal of Physical Chemistry A, 2011, 115, 7141-7152.	1.1	20
27	Results and perspectives of the MO–VB method. Application examples on the He2 and the LiH–He complexes. Physical Chemistry Chemical Physics, 2010, 12, 4224.	1.3	0
28	QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics Condensed Matter, 2009, 21, 395502.	0.7	18,183
29	Ground state potential energy surfaces and bound states of M–He dimers (M=Cu,Ag,Au): A theoretical investigation. Journal of Chemical Physics, 2008, 129, 204307.	1.2	30
30	Application of valence-bond techniques to the study of weakly bound complexes. The potential energy surface of the Ne–CH4system. Physical Chemistry Chemical Physics, 2007, 9, 2457-2469.	1.3	4
31	Chemical insight into electron density and wave functions: software developments and applications to crystals, molecular complexes and materials science. Theoretical Chemistry Accounts, 2007, 117, 847-884.	0.5	48
32	The electronic structure of nitrilimine: absence of the carbenic form. Chemical Communications, 2006, , 1030.	2.2	22
33	Predicting atomic dopant solvation in helium clusters: The MgHen case. Journal of Chemical Physics, 2005, 123, 054328.	1.2	38
34	A Chemical Approacht o the First-Principles Modeling of Novel Thermoelectric Materials. , 2005, , 7-1-7-13.		1
35	An experimental (120â€K) and theoretical electron-density study of KMnO4and KClO4. Acta Crystallographica Section A: Foundations and Advances, 2004, 60, 494-501.	0.3	47
36	Interstitial Zn Atoms Do the Trick in Thermoelectric Zinc Antimonide, Zn4Sb3: A Combined Maximum Entropy Method X-ray Electron Density and Ab Initio Electronic Structure Study. Chemistry - A European Journal, 2004, 10, 3861-3870.	1.7	169

FAUSTO CARGNONI

#	Article	IF	CITATIONS
37	Potential energy surface, bound states, and rotational inelastic cross sections of the He-CH[sub 4] system: A theoretical investigation. Journal of Chemical Physics, 2004, 121, 8261.	1.2	17
38	Chemical information from the source function. Journal of Computational Chemistry, 2003, 24, 422-436.	1.5	160
39	An ab initio investigation of the He–H2O complex. Chemical Physics Letters, 2003, 370, 233-239.	1.2	32
40	Germanium K edge in GeO2 polymorphs. Correlation between local coordination and electronic structure of germanium. Physical Chemistry Chemical Physics, 2003, 5, 1451-1456.	1.3	24
41	Fundamental Properties and Nature of CH··O Interactions in Crystals on the Basis of Experimental and Theoretical Charge Densities. The Case of 3,4-Bis(dimethylamino)-3-cyclobutene-1,2-dione (DMACB) Crystal. Journal of Physical Chemistry A, 2002, 106, 2707-2720.	1.1	118
42	Direct-space analysis of the electronic structure of the YBa2Cu3O6 and YBa2Cu3O7 crystals. Canadian Journal of Chemistry, 2002, 80, 235-244.	0.6	4
43	An MOâ^'VB Approach for the Determination of Intermolecular Forces. Theory and Calculations on the He2, Heâ^'CH4, and Heâ^'H2O Systems. Journal of Physical Chemistry A, 2002, 106, 5521-5528.	1.1	12
44	Direct-space analysis of the Si-Si bonding pattern in the π-bonded chain reconstructed Si(111)(2 × 1) surface. Theoretical Chemistry Accounts, 2001, 105, 309-322.	0.5	9
45	Geometrical reconstructions and electronic relaxations of silicon surfaces. I. An electron density topological study of H-covered and clean Si(111)(1×1) surfaces. Journal of Chemical Physics, 2000, 112, 887-899.	1.2	16
46	Evolution of energetics and bonding of compact self-interstitial clusters in Si. Europhysics Letters, 2000, 50, 608-614.	0.7	45
47	Formation and annihilation of a bond defect in silicon: Anab initioquantum-mechanical characterization. Physical Review B, 1998, 57, 170-177.	1.1	73
48	A theoretical investigation on the chemical bonding of interstitial and vacancy defects in silicon during their migration. Nuclear Instruments & Methods in Physics Research B, 1997, 127-128, 235-238.	0.6	2
49	Hydrogen diffusion in crystalline SiO2. Chemical Physics Letters, 1997, 264, 435-440.	1.2	16
50	Structure, energetics, clustering and migration of point-defects in silicon. Physica Scripta, 1996, T66, 207-211.	1.2	2