Pawel Niedzialkowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6318289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Scientific Reports, 2017, 7, 15707.	1.6	107
2	Boron-Enhanced Growth of Micron-Scale Carbon-Based Nanowalls: A Route toward High Rates of Electrochemical Biosensing. ACS Applied Materials & amp; Interfaces, 2017, 9, 12982-12992.	4.0	75
3	Understanding the origin of high corrosion inhibition efficiency of bee products towards aluminium alloys in alkaline environments. Electrochimica Acta, 2019, 304, 263-274.	2.6	57
4	Comparison of the paracetamol electrochemical determination using boron-doped diamond electrode and boron-doped carbon nanowalls. Biosensors and Bioelectronics, 2019, 126, 308-314.	5.3	56
5	Biomolecular influenza virus detection based on the electrochemical impedance spectroscopy using the nanocrystalline boron-doped diamond electrodes with covalently bound antibodies. Sensors and Actuators B: Chemical, 2019, 280, 263-271.	4.0	54
6	Poly-l-lysine-modified boron-doped diamond electrodes for the amperometric detection of nucleic acid bases. Journal of Electroanalytical Chemistry, 2015, 756, 84-93.	1.9	52
7	Optical Monitoring of Electrochemical Processes With ITO-Based Lossy-Mode Resonance Optical Fiber Sensor Applied as an Electrode. Journal of Lightwave Technology, 2018, 36, 954-960.	2.7	51
8	The development of 1,3-diphenylisobenzofuran as a highly selective probe for the detection and quantitative determination of hydrogen peroxide. Free Radical Research, 2017, 51, 38-46.	1.5	49
9	Novel Functionalization of Boron-Doped Diamond by Microwave Pulsed-Plasma Polymerized Allylamine Film. Journal of Physical Chemistry C, 2014, 118, 8014-8025.	1.5	43
10	Melamineâ€modified Boronâ€doped Diamond towards Enhanced Detection of Adenine, Guanine and Caffeine. Electroanalysis, 2016, 28, 211-221.	1.5	33
11	The role of electrolysis and enzymatic hydrolysis treatment in the enhancement of the electrochemical properties of 3D-printed carbon black/poly(lactic acid) structures. Applied Surface Science, 2022, 574, 151587.	3.1	29
12	New Anthraquinone Derivatives as Electrochemical Redox Indicators for the Visualization of the DNA Hybridization Process. Electroanalysis, 2010, 22, 49-59.	1.5	28
13	Corrosion Inhibition Mechanism and Efficiency Differentiation of Dihydroxybenzene Isomers Towards Aluminum Alloy 5754 in Alkaline Media. Materials, 2019, 12, 3067.	1.3	27
14	Electrochemical performance of indium-tin-oxide-coated lossy-mode resonance optical fiber sensor. Sensors and Actuators B: Chemical, 2019, 301, 127043.	4.0	25
15	Synthesis, redox properties, and basicity of substituted 1-aminoanthraquinones: spectroscopic, electrochemical, and computational studies in acetonitrile solutions. Structural Chemistry, 2014, 25, 625-634.	1.0	24
16	Optical Detection of Ketoprofen by Its Electropolymerization on an Indium Tin Oxide-Coated Optical Fiber Probe. Sensors, 2018, 18, 1361.	2.1	23
17	Electrochemical performance of thin free-standing boron-doped diamond nanosheet electrodes. Journal of Electroanalytical Chemistry, 2020, 862, 114016.	1.9	23
18	Tailoring properties of indium tin oxide thin films for their work in both electrochemical and optical label-free sensing systems. Sensors and Actuators B: Chemical, 2021, 343, 130173.	4.0	23

#	Article	IF	CITATIONS
19	Synthesis of lysine derivatives containing aza-crown ethers and a chromophore unit. Tetrahedron Letters, 2005, 46, 1735-1738.	0.7	20
20	Single-crystal X-ray diffraction analysis of designer drugs: Hydrochlorides of metaphedrone and pentedrone. Forensic Science International, 2013, 232, e28-e32.	1.3	20
21	Analysis of interactions between calf thymus DNA and 1,5-di(piperazin-1-yl)anthracene-9,10-dione using spectroscopic and electrochemical methods. Journal of Molecular Liquids, 2019, 289, 111080.	2.3	20
22	Multisine impedimetric probing of biocatalytic reactions for label-free detection of DEFB1 gene: How to verify that your dog is not human?. Sensors and Actuators B: Chemical, 2020, 323, 128664.	4.0	19
23	Helium-assisted, solvent-free electro-activation of 3D printed conductive carbon-polylactide electrodes by pulsed laser ablation. Applied Surface Science, 2021, 556, 149788.	3.1	19
24	Study on Combined Optical and Electrochemical Analysis Using Indiumâ€tinâ€oxideâ€coated Optical Fiber Sensor. Electroanalysis, 2019, 31, 398-404.	1.5	18
25	Ultrasensitive electrochemical determination of the cancer biomarker protein sPD-L1 based on a BMS-8-modified gold electrode. Bioelectrochemistry, 2021, 139, 107742.	2.4	18
26	Simultaneous voltammetric determination of Cd2+, Pb2+, and Cu2+ ions captured by Fe3O4@SiO2 core-shell nanostructures of various outer amino chain length. Journal of Molecular Liquids, 2020, 314, 113677.	2.3	17
27	Lysine and Arginine Oligopeptides Tagged with Anthraquinone: Electrochemical Properties. Electroanalysis, 2012, 24, 975-982.	1.5	16
28	Functionalized Fe3O4 Nanoparticles as Glassy Carbon Electrode Modifiers for Heavy Metal Ions Detection—A Mini Review. Materials, 2021, 14, 7725.	1.3	15
29	Characteristics of multiwalled carbon nanotubes-rhenium nanocomposites with varied rhenium mass fractions. Nanomaterials and Nanotechnology, 2017, 7, 184798041770717.	1.2	14
30	Hydrogen bonding and protonation effects in amino acids' anthraquinone derivatives - Spectroscopic and electrochemical studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 222, 117226.	2.0	14
31	Electrochemically directed biofunctionalization of a lossy-mode resonance optical fiber sensor. Optics Express, 2020, 28, 15934.	1.7	14
32	Influence of different amino substituents in position 1 and 4 on spectroscopic and acid base properties of 9,10-anthraquinone moiety. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 108, 82-88.	2.0	13
33	Synthesis and electrochemical, spectral, and biological evaluation of novel 9,10-anthraquinone derivatives containing piperidine unit as potent antiproliferative agents. Journal of Molecular Structure, 2019, 1175, 488-495.	1.8	13
34	The benefits of photoacoustics for the monitoring of drug stability and penetration through tissue-mimicking membranes. International Journal of Pharmaceutics, 2020, 580, 119233.	2.6	11
35	Formation of stoichiometric complexes between dibenzo-30-crown-10 and guanidinium moiety containing compounds. International Journal of Mass Spectrometry, 2007, 266, 180-184.	0.7	10
36	In pursuit of the ideal chromoionophores (part I): pH-spectrophotometric characteristics of aza-12-crown-4 ethers substituted with an anthraquinone moiety. Dyes and Pigments, 2016, 130, 273-281.	2.0	10

#	Article	IF	CITATIONS
37	Complexes between some lysine-containing peptides and crown ethers—electrospray ionization mass spectrometric study. Journal of Mass Spectrometry, 2007, 42, 459-466.	0.7	9
38	Comparison of Cadmium Cd 2+ and Lead Pb 2+ Binding by Fe 2 O 3 @SiO 2 â€EDTA Nanoparticles – Binding Stability and Kinetic Studies. Electroanalysis, 2020, 32, 588-597.	1.5	9
39	Efficient Method for the Concentration Determination of Fmoc Groups Incorporated in the Core-Shell Materials by Fmoc–Glycine. Molecules, 2020, 25, 3983.	1.7	9
40	Dansyl-Labelled Ag@SiO2 Core-Shell Nanostructures—Synthesis, Characterization, and Metal-Enhanced Fluorescence. Materials, 2020, 13, 5168.	1.3	9
41	In pursuit of key features for constructing electrochemical biosensors – electrochemical and acid-base characteristic of self-assembled monolayers on gold. Supramolecular Chemistry, 2020, 32, 256-266.	1.5	9
42	Thiol-functionalized anthraquinones: mass spectrometry and electrochemical studies. Monatshefte Für Chemie, 2011, 142, 1121-1129.	0.9	8
43	Direct amination of boronâ€doped diamond by plasma polymerized allylamine film. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2319-2327.	0.8	8
44	Polyether precursors of molecular recognition systems based on the 9,10-anthraquinone moiety. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 979-986.	2.0	8
45	Linear antenna microwave chemical vapour deposition of diamond films on long-period fiber gratings for bio-sensing applications. Optical Materials Express, 2017, 7, 3952.	1.6	8
46	Adhesion as a component of retention force of overdenture prostheses-study on selected Au based dental materials used for telescopic crowns using atomic force microscopy and contact angle techniques. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 121, 104648.	1.5	7
47	Aurintricarboxylic acid structure modifications lead to reduction of inhibitory properties against virulence factor YopH and higher cytotoxicity. World Journal of Microbiology and Biotechnology, 2016, 32, 163.	1.7	6
48	Redox process is crucial for inhibitory properties of aurintricarboxylic acid against activity of YopH: virulence factor of <i>Yersinia pestis</i> . Oncotarget, 2015, 6, 18364-18373.	0.8	6
49	1-Dimethylamino-9,10-anthraquinone. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o723-o723.	0.2	5
50	1-(Piperidin-1-yl)-9,10-anthraquinone. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2879-o2879.	0.2	5
51	Potentiometric and AM1d studies of the equilibria between silver(I) and diaza-15-crown and diaza-18-crown ethers with nitrogen in different positions in various solvents. Journal of Coordination Chemistry, 2013, 66, 180-190.	0.8	5
52	Potentiometric and AM1d studies of the equilibria between silver(I) and monoaza, diaza, triaza and tetraaza-12-crown ethers in acetonitrile and propylene carbonate. Journal of Coordination Chemistry, 2013, 66, 1220-1227.	0.8	4
53	Potentiometric, spectrophotometric, and AM1d studies of the equilibria between silver(I) ion and monoaza-crown ethers with anthraquinone in various solvents. Journal of Coordination Chemistry, 2013, 66, 2141-2151.	0.8	4
54	Label-Free Electrochemical Test of Protease Interaction with a Peptide Substrate Modified Gold Electrode. Chemosensors, 2021, 9, 199.	1.8	4

#	Article	IF	CITATIONS
55	Thin Films of Nanocrystalline Fe(pz)[Pt(CN)4] Deposited by Resonant Matrix-Assisted Pulsed Laser Evaporation. Materials, 2021, 14, 7135.	1.3	4
56	Insight into Potassium Vanadates as Visible-Light-Driven Photocatalysts: Synthesis of V(IV)-Rich Nano/Microstructures for the Photodegradation of Methylene Blue. Inorganic Chemistry, 2022, 61, 9433-9444.	1.9	4
57	Potentiometric, spectrophotometric and AM1d studies of the equilibria between silver(I) ion and diaza-crown ethers with anthraquinone moiety in various solvents. Polyhedron, 2015, 102, 677-683.	1.0	3
58	1,8-Bis(tosyloxy)-9,10-anthraquinone. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o33-o34.	0.2	3
59	Optical fiber lossy-mode resonance sensors with doped tin oxides for optical working electrode monitoring in electrochemical systems. , 2019, , .		3
60	1,5-Bis(piperidin-1-yl)-9,10-anthraquinone. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o110-o110.	0.2	2
61	New Core-Shell Nanostructures for FRET Studies: Synthesis, Characterization, and Quantitative Analysis. International Journal of Molecular Sciences, 2022, 23, 3182.	1.8	2
62	Poly-l-Lysine-functionalized fluorescent diamond particles: pH triggered fluorescence enhancement via surface charge modulation. MRS Bulletin, 2022, 47, 1011-1022.	1.7	2
63	The electrochemical and spectroscopic characterization of 1,4 and 1,8-aminoanthraquinone derivatives. Copernican Letters, 0, 1, 57.	0.0	1
64	Annealing of indium tin oxide (ITO) coated optical fibers for optical and electrochemical sensing purposes. , 2016, , .		0
65	The oxidation-reduction reactions in regulation of protein tyrosine phosphatases activity. AIP Conference Proceedings, 2018, , .	0.3	0
66	Studies on Aminoanthraquinone-Modified Glassy Carbon Electrode: Synthesis and Electrochemical Performance toward Oxygen Reduction. Russian Journal of Electrochemistry, 2021, 57, 245-254.	0.3	0
67	Methyl 7-methoxy-9-oxo-9H-xanthene-2-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o484-o485.	0.2	0
68	Influence of substituent on spectroscopic and acid-base properties of anthraquinone derivatives. Copernican Letters, 0, 1, 51.	0.0	0
69	Electrochemically-enhanced Lossy-Mode Resonance Optical Fiber Sensor for Protein Detection. , 2021, , .		0