
Amy Wesolowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/631772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infectious disease in an era of global change. Nature Reviews Microbiology, 2022, 20, 193-205.	28.6	509
2	A preâ€processing pipeline to quantify, visualize, and reduce technical variation in protein microarray studies. Proteomics, 2022, 22, e2100033.	2.2	0
3	Existing human mobility data sources poorly predicted the spatial spread of SARS-CoV-2 in Madagascar. Epidemics, 2022, 38, 100534.	3.0	6
4	Leveraging serology to titrate immunization program functionality for diphtheria in Madagascar. Epidemiology and Infection, 2022, 150, 1-34.	2.1	1
5	Long-term effects of increased adoption of artemisinin combination therapies in Burkina Faso. PLOS Global Public Health, 2022, 2, e0000111.	1.6	13
6	Prioritizing COVID-19 vaccination efforts and dose allocation within Madagascar. BMC Public Health, 2022, 22, 724.	2.9	9
7	The Unmeasured Burden of Febrile, Respiratory, and Diarrheal Illnesses Identified Through Active Household Surveillance in a Low Malaria Transmission Setting in Southern Zambia. American Journal of Tropical Medicine and Hygiene, 2022, 106, 1791-1799.	1.4	1
8	Development and dissemination of infectious disease dynamic transmission models during the COVID-19 pandemic: what can we learn from other pathogens and how can we move forward?. The Lancet Digital Health, 2021, 3, e41-e50.	12.3	23
9	Sustained Malaria Transmission despite Reactive Screen-and-Treat in a Low-Transmission Area of Southern Zambia. American Journal of Tropical Medicine and Hygiene, 2021, 104, 671-679.	1.4	10
10	Genotyping cognate Plasmodium falciparum in humans and mosquitoes to estimate onward transmission of asymptomatic infections. Nature Communications, 2021, 12, 909.	12.8	36
11	Reconstructing unseen transmission events to infer dengue dynamics from viral sequences. Nature Communications, 2021, 12, 1810.	12.8	12
12	Effect of specific non-pharmaceutical intervention policies on SARS-CoV-2 transmission in the counties of the United States. Nature Communications, 2021, 12, 3560.	12.8	35
13	Improvements in Severe Acute Respiratory Syndrome Coronavirus 2 Testing Cascade in the United States: Data From Serial Cross-sectional Assessments. Clinical Infectious Diseases, 2021, , .	5.8	5
14	Holiday gatherings, mobility and SARS-CoV-2 transmission: results from 10 US states following Thanksgiving. Scientific Reports, 2021, 11, 17328.	3.3	26
15	Trip duration drives shift in travel network structure with implications for the predictability of spatial disease spread. PLoS Computational Biology, 2021, 17, e1009127.	3.2	4
16	Epidemiology of Plasmodium falciparum Infections in a Semi-Arid Rural African Setting: Evidence of Reactive Case Detection in Northwestern Kenya. American Journal of Tropical Medicine and Hygiene, 2021, 105, 1076-1084.	1.4	9
17	Characterizing human mobility patterns in rural settings of sub-Saharan Africa. ELife, 2021, 10, .	6.0	8
18	Challenges in evaluating risks and policy options around endemic establishment or elimination of novel pathogens. Epidemics, 2021, 37, 100507.	3.0	4

AMY WESOLOWSKI

#	Article	IF	CITATIONS
19	Study Protocol: A Cross-Sectional Examination of Socio-Demographic and Ecological Determinants of Nutrition and Disease Across Madagascar. Frontiers in Public Health, 2020, 8, 500.	2.7	6
20	The use of mobile phone data to inform analysis of COVID-19 pandemic epidemiology. Nature Communications, 2020, 11, 4961.	12.8	246
21	Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature, 2020, 585, 410-413.	27.8	913
22	Seroprevalence of pertussis in Madagascar and implications for vaccination. Epidemiology and Infection, 2020, 148, e283.	2.1	1
23	The duration of travel impacts the spatial dynamics of infectious diseases. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22572-22579.	7.1	27
24	A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity. Nature Communications, 2020, 11, 4704.	12.8	775
25	Mapping the travel patterns of people with malaria in Bangladesh. BMC Medicine, 2020, 18, 45.	5.5	11
26	Aggregated mobility data could help fight COVID-19. Science, 2020, 368, 145-146.	12.6	303
27	Coexisting attractors in the context of cross-scale population dynamics: measles in London as a case study. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20191510.	2.6	3
28	Deployment of convalescent plasma for the prevention and treatment of COVID-19. Journal of Clinical Investigation, 2020, 130, 2757-2765.	8.2	649
29	Towards better targeting: lessons from a posthoneymoon measles outbreak in Madagascar, 2018–2019. BMJ Global Health, 2020, 5, e003153.	4.7	1
30	LB-10. Rapid Assessments of Non-Pharmaceutical Intervention Uptake and Population Mobility Patterns Elucidate SARS-Cov-2 Transmission Dynamics. Open Forum Infectious Diseases, 2020, 7, S848-S848.	0.9	1
31	Long-term dynamics of measles in London: Titrating the impact of wars, the 1918 pandemic, and vaccination. PLoS Computational Biology, 2019, 15, e1007305.	3.2	12
32	High Plasmodium falciparum genetic diversity and temporal stability despite control efforts in high transmission settings along the international border between Zambia and the Democratic Republic of the Congo. Malaria Journal, 2019, 18, 400.	2.3	18
33	Genetic Evidence of Focal <i>Plasmodium falciparum</i> Transmission in a Pre-elimination Setting in Southern Province, Zambia. Journal of Infectious Diseases, 2019, 219, 1254-1263.	4.0	20
34	Mapping imported malaria in Bangladesh using parasite genetic and human mobility data. ELife, 2019, 8, .	6.0	78
35	Using parasite genetic and human mobility data to infer local and cross-border malaria connectivity in Southern Africa. ELife, 2019, 8, .	6.0	83
36	Seasonal and interannual risks of dengue introduction from South-East Asia into China, 2005-2015. PLoS Neglected Tropical Diseases, 2018, 12, e0006743.	3.0	30

AMY WESOLOWSKI

#	Article	IF	CITATIONS
37	Estimating sources and sinks of malaria parasites in Madagascar. Nature Communications, 2018, 9, 3897.	12.8	28
38	Nonannual seasonality of influenzaâ€like illness in a tropical urban setting. Influenza and Other Respiratory Viruses, 2018, 12, 742-754.	3.4	13
39	Mapping malaria by combining parasite genomic and epidemiologic data. BMC Medicine, 2018, 16, 190.	5.5	68
40	Spatial and temporal dynamics of malaria in Madagascar. Malaria Journal, 2018, 17, 58.	2.3	28
41	Analysis of multi-level spatial data reveals strong synchrony in seasonal influenza epidemics across Norway, Sweden, and Denmark. PLoS ONE, 2018, 13, e0197519.	2.5	17
42	Population mobility reductions associated with travel restrictions during the Ebola epidemic in Sierra Leone: use of mobile phone data. International Journal of Epidemiology, 2018, 47, 1562-1570.	1.9	111
43	Measles outbreak risk in Pakistan: exploring the potential of combining vaccination coverage and incidence data with novel data-streams to strengthen control. Epidemiology and Infection, 2018, 146, 1575-1583.	2.1	17
44	Identifying climate drivers of infectious disease dynamics: recent advances and challenges ahead. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170901.	2.6	91
45	Multinational patterns of seasonal asymmetry in human movement influence infectious disease dynamics. Nature Communications, 2017, 8, 2069.	12.8	73
46	Risk factors and short-term projections for serotype-1 poliomyelitis incidence in Pakistan: A spatiotemporal analysis. PLoS Medicine, 2017, 14, e1002323.	8.4	19
47	Introduction of rubella-containing-vaccine to Madagascar: implications for roll-out and local elimination. Journal of the Royal Society Interface, 2016, 13, 20151101.	3.4	14
48	Connecting Mobility to Infectious Diseases: The Promise and Limits of Mobile Phone Data. Journal of Infectious Diseases, 2016, 214, S414-S420.	4.0	158
49	Plasmodium falciparum malaria importation from Africa to China and its mortality: an analysis of driving factors. Scientific Reports, 2016, 6, 39524.	3.3	28
50	Dynamic denominators: the impact of seasonally varying population numbers on disease incidence estimates. Population Health Metrics, 2016, 14, 35.	2.7	32
51	Enhancing disease surveillance with novel data streams: challenges and opportunities. EPJ Data Science, 2015, 4, .	2.8	119
52	Evaluating Spatial Interaction Models for Regional Mobility in Sub-Saharan Africa. PLoS Computational Biology, 2015, 11, e1004267.	3.2	66
53	Quantifying the Impact of Accessibility on Preventive Healthcare in Sub-Saharan Africa Using Mobile Phone Data. Epidemiology, 2015, 26, 223-228.	2.7	21
54	Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11887-11892.	7.1	369

AMY WESOLOWSKI

#	Article	IF	CITATIONS
55	Quantifying seasonal population fluxes driving rubella transmission dynamics using mobile phone data. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11114-11119.	7.1	124
56	Quantifying travel behavior for infectious disease research: a comparison of data from surveys and mobile phones. Scientific Reports, 2014, 4, 5678.	3.3	114
57	Commentary: Containing the Ebola Outbreak - the Potential and Challenge of Mobile Network Data. PLOS Currents, 2014, 6, .	1.4	126
58	The impact of biases in mobile phone ownership on estimates of human mobility. Journal of the Royal Society Interface, 2013, 10, 20120986.	3.4	167
59	Mobile phones and malaria: Modeling human and parasite travel. Travel Medicine and Infectious Disease, 2013, 11, 15-22.	3.0	114
60	The Use of Census Migration Data to Approximate Human Movement Patterns across Temporal Scales. PLoS ONE, 2013, 8, e52971.	2.5	69
61	Quantifying the Impact of Human Mobility on Malaria. Science, 2012, 338, 267-270.	12.6	788
62	Human movement data for malaria control and elimination strategic planning. Malaria Journal, 2012, 11, 205.	2.3	124
63	Heterogeneous Mobile Phone Ownership and Usage Patterns in Kenya. PLoS ONE, 2012, 7, e35319.	2.5	170