Sun-Min Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6317609/publications.pdf

Version: 2024-02-01

40 papers 6,455 citations

236612 25 h-index 288905 40 g-index

42 all docs 42 docs citations

42 times ranked 9489 citing authors

#	Article	IF	CITATIONS
1	An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nature Nanotechnology, 2017, 12, 441-446.	15.6	1,271
2	Nitrogenated holey two-dimensional structures. Nature Communications, 2015, 6, 6486.	5.8	923
3	Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy, 2012, 1, 534-551.	8.2	628
4	Edge-carboxylated graphene nanosheets via ball milling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5588-5593.	3.3	595
5	Large-Scale Production of Edge-Selectively Functionalized Graphene Nanoplatelets via Ball Milling and Their Use as Metal-Free Electrocatalysts for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2013, 135, 1386-1393.	6.6	578
6	Two-dimensional polyaniline (C ₃ N) from carbonized organic single crystals in solid state. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7414-7419.	3.3	380
7	Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Scientific Reports, 2013, 3, 1810.	1.6	300
8	Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Scientific Reports, 2013, 3, 2260.	1.6	204
9	Direct Synthesis of a Covalent Triazineâ€Based Framework from Aromatic Amides. Angewandte Chemie - International Edition, 2018, 57, 8438-8442.	7.2	196
10	Graphene Nanoplatelets Doped with N at its Edges as Metalâ€Free Cathodes for Organic Dyeâ€Sensitized Solar Cells. Advanced Materials, 2014, 26, 3055-3062.	11.1	140
11	Cobalt Oxide Encapsulated in C ₂ N- <i>h</i> 2D Network Polymer as a Catalyst for Hydrogen Evolution. Chemistry of Materials, 2015, 27, 4860-4864.	3.2	131
12	Defect-Free Encapsulation of Fe ⁰ in 2D Fused Organic Networks as a Durable Oxygen Reduction Electrocatalyst. Journal of the American Chemical Society, 2018, 140, 1737-1742.	6.6	124
13	Fe@C2N: A highly-efficient indirect-contact oxygen reduction catalyst. Nano Energy, 2018, 44, 304-310.	8.2	118
14	Macroporous Inverse Opal-like Mo _{<i>x</i>} C with Incorporated Mo Vacancies for Significantly Enhanced Hydrogen Evolution. ACS Nano, 2017, 11, 7527-7533.	7.3	102
15	Edge-selenated graphene nanoplatelets as durable metal-free catalysts for iodine reduction reaction in dye-sensitized solar cells. Science Advances, 2016, 2, e1501459.	4.7	88
16	Controlled Fabrication of Hierarchically Structured Nitrogenâ€Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst. Advanced Functional Materials, 2017, 27, 1605717.	7.8	80
17	Antimony-doped graphene nanoplatelets. Nature Communications, 2015, 6, 7123.	5.8	77
18	Direct Solvothermal Synthesis of B/Nâ€Doped Graphene. Angewandte Chemie - International Edition, 2014, 53, 2398-2401.	7.2	61

#	Article	IF	CITATIONS
19	B-Doped Graphene as an Electrochemically Superior Metal-Free Cathode Material As Compared to Pt over a Co(II)/Co(III) Electrolyte for Dye-Sensitized Solar Cell. Chemistry of Materials, 2014, 26, 3586-3591.	3.2	57
20	The oxidation mechanism of highly ordered pyrolytic graphite in a nitric acid/sulfuric acid mixture. Carbon, 2013, 52, 493-498.	5.4	56
21	Metalloid tellurium-doped graphene nanoplatelets as ultimately stable electrocatalysts for cobalt reduction reaction in dye-sensitized solar cells. Nano Energy, 2016, 30, 867-876.	8.2	49
22	Edge-thionic acid-functionalized graphene nanoplatelets as anode materials for high-rate lithium ion batteries. Nano Energy, 2019, 62, 419-425.	8.2	44
23	Heavily aluminated graphene nanoplatelets as an efficient flame-retardant. Carbon, 2017, 116, 77-83.	5.4	43
24	Direct Synthesis of a Covalent Triazineâ€Based Framework from Aromatic Amides. Angewandte Chemie, 2018, 130, 8574-8578.	1.6	40
25	A Robust 3D Cageâ€like Ultramicroporous Network Structure with High Gasâ€Uptake Capacity. Angewandte Chemie - International Edition, 2018, 57, 3415-3420.	7.2	40
26	Oxidative Dehydrogenation of Ethylbenzene into Styrene by Fe-Graphitic Catalysts. ACS Nano, 2019, 13, 5893-5899.	7. 3	26
27	Boron-nitrogen-phosphorous doped graphene nanoplatelets for enhanced electrocatalytic activity. European Polymer Journal, 2018, 99, 511-517.	2.6	17
28	Forming a three-dimensional porous organic network via solid-state explosion of organic single crystals. Nature Communications, 2017, 8, 1599.	5.8	12
29	Nitrogen-rich two-dimensional porous polybenzimidazole network as a durable metal-free electrocatalyst for a cobalt reduction reaction in organic dye-sensitized solar cells. Nano Energy, 2017, 34, 533-540.	8.2	11
30	Paramagnetic Carbon Nanosheets with Random Hole Defects and Oxygenated Functional Groups. Angewandte Chemie - International Edition, 2019, 58, 11670-11675.	7.2	9
31	Oneâ€Pot Purification and Iodination of Waste Kish Graphite into Highâ€Quality Electrocatalyst. Particle and Particle Systems Characterization, 2017, 34, 1600426.	1.2	8
32	Forming indium-carbon (Inâ \in "C) bonds at the edges of graphitic nanoplatelets. Materials Today Advances, 2020, 6, 100030.	2.5	7
33	Unusually Stable Triazineâ€based Organic Superstructures. Angewandte Chemie - International Edition, 2016, 55, 7413-7417.	7.2	6
34	A Robust 3D Cageâ€like Ultramicroporous Network Structure with High Gasâ€Uptake Capacity. Angewandte Chemie, 2018, 130, 3473-3478.	1.6	6
35	Large clusters and hollow microfibers by multicomponent self-assembly of citrate stabilized gold nanoparticles with temperature-responsive amphiphilic dendrimers. Journal of Materials Chemistry, 2012, 22, 13365.	6.7	5
36	Unusually Stable Triazineâ€based Organic Superstructures. Angewandte Chemie, 2016, 128, 7539-7543.	1.6	3

#	Article	IF	CITATIONS
37	Fused aromatic networks with the different spatial arrangement of structural units. Cell Reports Physical Science, 2021, 2, 100502.	2.8	3
38	Electrocatalyts: Controlled Fabrication of Hierarchically Structured Nitrogenâ€Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst (Adv. Funct. Mater. 9/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
39	Paramagnetic Carbon Nanosheets with Random Hole Defects and Oxygenated Functional Groups. Angewandte Chemie, 2019, 131, 11796-11801.	1.6	1
40	Innentitelbild: Paramagnetic Carbon Nanosheets with Random Hole Defects and Oxygenated Functional Groups (Angew. Chem. 34/2019). Angewandte Chemie, 2019, 131, 11668-11668.	1.6	0