Yabo Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6317207/publications.pdf

Version: 2024-02-01

		1040056	1125743
23	210	9	13
papers	citations	h-index	g-index
23	23	23	199
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Flower-like composites of black phosphorus and reduced graphene oxide: Its synergistic energy storage performance. Diamond and Related Materials, 2022, 121, 108794.	3.9	6
2	Ag/black phosphorus composite based on multilayer black phosphorus: Its preparation and photocatalytic methyl orange degradation performance. Materials Science in Semiconductor Processing, 2021, 121, 105309.	4.0	13
3	Simultaneous Preparation and Functionalization of Ultrathin Fewâ^'layer Black Phosphorus Nanosheets and Their Electrocatalytic OER and HER Performance. ChemCatChem, 2021, 13, 592-602.	3.7	14
4	<i>In situ</i> growth of porous carbon with adjustable morphology on black phosphorus nanosheets for boosting electrocatalytic H ₂ and O ₂ evolution. New Journal of Chemistry, 2021, 45, 12203-12212.	2.8	4
5	Solvothermal synthesis of weakly crystalline cobalt–nickel sulfide to obtain high pseudocapacitance. Journal of Materials Science: Materials in Electronics, 2021, 32, 11072-11083.	2.2	2
6	Appropriate amount of polyaniline coated Co3O4 nanofibers and their excellent electrochemical properties. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113836.	2.7	10
7	Design of electrode materials of nickel-cobalt compounds for aqueous symmetrical supercapacitor with large power and high energy density. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 605, 125243.	4.7	6
8	The preparation of black phosphorus in RP/Sn/I2 system: its nucleation agent and relatively optimal temperature program. Journal of Materials Science: Materials in Electronics, 2020, 31, 19093-19105.	2.2	4
9	Preparation of few-layer black phosphorus by wet ball milling exfoliation. Journal of Materials Science: Materials in Electronics, 2020, 31, 9543-9549.	2.2	12
10	Morphology modulation and gas sensitivity improvement of indium oxide semiconductor nanomaterials. Journal of Materials Science: Materials in Electronics, 2020, 31, 5047-5053.	2.2	2
11	The different electrochemical performance of nickel–cobalt sulfide and its formation mechanism of honeycomb-like structure. Journal of Materials Science: Materials in Electronics, 2019, 30, 16000-16007.	2.2	4
12	Effective improvement in capacitance performance of polypyrrole assisted by black phosphorus. Journal of Materials Science: Materials in Electronics, 2019, 30, 15130-15138.	2.2	9
13	Adjustment of Nickel Cobalt Sulfide morphology with double solvents for its excellent charge-discharge performance. Materials Science in Semiconductor Processing, 2019, 93, 99-104.	4.0	8
14	Ni2P grown in situ on milled black phosphorus flakes and its high energy storage performance. Journal of Alloys and Compounds, 2019, 784, 990-995.	5.5	15
15	Sulfidation of cobalt nickel oxide nanofibers for improving their specific capacity. Journal of Materials Science: Materials in Electronics, 2018, 29, 20800-20807.	2.2	7
16	Improving the electrochemical performance of Nano-PANI by adding manganese. Journal of Materials Science: Materials in Electronics, 2018, 29, 12366-12372.	2.2	8
17	Electrospinning Preparation of La-Doped SnO2 Hollow Nanofibers: An Improvement of Their Gas Sensing Properties. Journal of Nanoscience and Nanotechnology, 2018, 18, 6965-6970.	0.9	5
18	Multilayer Black Phosphorus Exfoliated with the Aid of Sodium Hydroxide: An Improvement in Electrochemical Energy Storage. Journal of Electronic Materials, 2018, 47, 4793-4798.	2.2	14

#	Article	IF	CITATION
19	A stage-by-stage phase-induction and nucleation of black phosphorus from red phosphorus under low-pressure mineralization. CrystEngComm, 2017, 19, 7207-7212.	2.6	32
20	Cuprous Sulfide/Reduced Graphene Oxide Hybrid Nanomaterials: Solvothermal Synthesis and Enhanced Electrochemical Performance. Journal of Electronic Materials, 2016, 45, 285-290.	2.2	7
21	Reduced graphene–cadmium sulfide hybrid nanopowders: solvothermal synthesis and enhanced electrochemical performance. Journal of Materials Science: Materials in Electronics, 2015, 26, 5697-5702.	2.2	3
22	The Specific Capacitive Performances of the Manganese Oxyhydroxide/Carbon microcoil Electrodes for Supercapacitors. Electrochimica Acta, 2015, 151, 134-139.	5.2	16
23	Reduced graphene oxide–cuprous oxide hybrid nanopowders: Solvothermal synthesis and electrochemical performance. Materials Science in Semiconductor Processing, 2014, 27, 1013-1019.	4.0	9