
Erik Alexandersson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/631714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Whole Gene Family Expression and Drought Stress Regulation of Aquaporins. Plant Molecular Biology, 2005, 59, 469-484.	3.9	429
2	Arabidopsis Plasma Membrane Proteomics Identifies Components of Transport, Signal Transduction and Membrane Trafficking. Plant and Cell Physiology, 2004, 45, 1543-1556.	3.1	236
3	Normalyzer: A Tool for Rapid Evaluation of Normalization Methods for Omics Data Sets. Journal of Proteome Research, 2014, 13, 3114-3120.	3.7	218
4	The short-term growth response to salt of the developing barley leaf. Journal of Experimental Botany, 2006, 57, 1079-1095.	4.8	150
5	Transcriptional regulation of aquaporins in accessions of Arabidopsis in response to drought stress. Plant Journal, 2010, 61, 650-660.	5.7	150
6	High-Throughput Field-Phenotyping Tools for Plant Breeding and Precision Agriculture. Agronomy, 2019, 9, 258.	3.0	144
7	The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L BMC Genomics, 2012, 13, 243.	2.8	112
8	Grapevine Plasticity in Response to an Altered Microclimate: Sauvignon Blanc Modulates Specific Metabolites in Response to Increased Berry Exposure. Plant Physiology, 2016, 170, 1235-1254.	4.8	91
9	Phosphite-induced changes of the transcriptome and secretome in Solanum tuberosum leading to resistance against Phytophthora infestans. BMC Plant Biology, 2014, 14, 254.	3.6	77
10	Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions. BMC Genomics, 2014, 15, 497.	2.8	77
11	The effects of the loss of TIP1;1 and TIP1;2 aquaporins in <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 56, 756-767.	5.7	71
12	Potassium phosphite combined with reduced doses of fungicides provides efficient protection against potato late blight in large-scale field trials. Crop Protection, 2016, 86, 42-55.	2.1	70
13	Integrative Genomic Signatures Of Hepatocellular Carcinoma Derived from Nonalcoholic Fatty Liver Disease. PLoS ONE, 2015, 10, e0124544.	2.5	70
14	Plant secretome proteomics. Frontiers in Plant Science, 2013, 4, 9.	3.6	67
15	Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach. BMC Genomics, 2014, 15, 315.	2.8	67
16	Plant Resistance Inducers against Pathogens in Solanaceae Species—From Molecular Mechanisms to Field Application. International Journal of Molecular Sciences, 2016, 17, 1673.	4.1	61
17	Field-omicsââ,¬â€understanding large-scale molecular data from field crops. Frontiers in Plant Science, 2014, 5, 286.	3.6	53
18	Automatic late blight lesion recognition and severity quantification based on field imagery of diverse potato genotypes by deep learning. Knowledge-Based Systems, 2021, 214, 106723.	7.1	46

Erik Alexandersson

#	Article	IF	CITATIONS
19	HvPIP1;6, a Barley (Hordeum vulgare L.) Plasma Membrane Water Channel Particularly Expressed in Growing Compared with Non-Growing Leaf Tissues. Plant and Cell Physiology, 2007, 48, 1132-1147.	3.1	44
20	Targeted Proteomics Approach for Precision Plant Breeding. Journal of Proteome Research, 2016, 15, 638-646.	3.7	44
21	Evaluation and integration of functional annotation pipelines for newly sequenced organisms: the potato genome as a test case. BMC Plant Biology, 2014, 14, 329.	3.6	42
22	Intact salicylic acid signalling is required for potato defence against the necrotrophic fungus Alternaria solani. Plant Molecular Biology, 2020, 104, 1-19.	3.9	32
23	Constitutive expression of a grapevine polygalacturonase-inhibiting protein affects gene expression and cell wall properties in uninfected tobacco. BMC Research Notes, 2011, 4, 493.	1.4	30
24	Botanicals and plant strengtheners for potato and tomato cultivation in Africa. Journal of Integrative Agriculture, 2020, 19, 406-427.	3.5	26
25	A novel workflow correlating RNA-seq data to Phythophthora infestans resistance levels in wild Solanum species and potato clones. Frontiers in Plant Science, 2015, 6, 718.	3.6	21
26	Linking crop traits to transcriptome differences in a progeny population of tetraploid potato. BMC Plant Biology, 2020, 20, 120.	3.6	18
27	Inoculation of Transgenic Resistant Potato by Phytophthora infestans Affects Host Plant Choice of a Generalist Moth. PLoS ONE, 2015, 10, e0129815.	2.5	16
28	Phosphite protects against potato and tomato late blight in tropical climates and has varying toxicity depending on the Phytophthora infestans isolate. Crop Protection, 2019, 121, 139-146.	2.1	14
29	Nongenetic Inheritance of Induced Resistance in a Wild Annual Plant. Phytopathology, 2016, 106, 877-883.	2.2	12
30	Functional phenomics for improved climate resilience in Nordic agriculture. Journal of Experimental Botany, 2022, 73, 5111-5127.	4.8	10
31	RNA seq analysis of potato cyst nematode interactions with resistant and susceptible potato roots. European Journal of Plant Pathology, 2018, 152, 531-539.	1.7	9
32	Gene Expression and Metabolite Profiling of Thirteen Nigerian Cassava Landraces to Elucidate Starch and Carotenoid Composition. Agronomy, 2020, 10, 424.	3.0	7
33	Phosphite alters the behavioral response of potato tuber moth (<i>Phthorimaea operculella</i>) to fieldâ€grown potato. Pest Management Science, 2019, 75, 616-621.	3.4	5
34	The <scp>MORPH</scp> â€R web server and software tool for predicting missing genes in biological pathways. Physiologia Plantarum, 2015, 155, 12-20.	5.2	3
35	Phosphite Integrated in Late Blight Treatment Strategies in Starch Potato Does Not Cause Residues in the Starch Product. Plant Disease, 2020, 104, 3026-3032.	1.4	3
36	Leaf Apoplast of Field-Grown Potato Analyzed by Quantitative Proteomics and Activity-Based Protein Profiling. International Journal of Molecular Sciences, 2021, 22, 12033.	4.1	1

#	Article	IF	CITATIONS
37	Computer Vision and Less Complex Image Analyses to Monitor Potato Traits in Fields. Methods in Molecular Biology, 2021, 2354, 273-299.	0.9	Ο