Jerome D Swinny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6316835/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dysfunctional Astrocytic and Synaptic Regulation of Hypothalamic Glutamatergic Transmission in a Mouse Model of Early-Life Adversity: Relevance to Neurosteroids and Programming of the Stress Response. Journal of Neuroscience, 2013, 33, 19534-19554.	3.6	138
2	Quantitative localisation of synaptic and extrasynaptic GABA _A receptor subunits on hippocampal pyramidal cells by freezeâ€fracture replica immunolabelling. European Journal of Neuroscience, 2010, 32, 1868-1888.	2.6	131
3	GABAA receptor-acting neurosteroids: A role in the development and regulation of the stress response. Frontiers in Neuroendocrinology, 2015, 36, 28-48.	5.2	121
4	Absence of Clial α-Dystrobrevin Causes Abnormalities of the Blood-Brain Barrier and Progressive Brain Edema. Journal of Biological Chemistry, 2012, 287, 41374-41385.	3.4	78
5	A GABAergic cell type in the lateral habenula links hypothalamic homeostatic and midbrain motivation circuits with sex steroid signaling. Translational Psychiatry, 2018, 8, 50.	4.8	78
6	Molecular and Functional Diversity of GABA-A Receptors in the Enteric Nervous System of the Mouse Colon. Journal of Neuroscience, 2014, 34, 10361-10378.	3.6	58
7	Tonic Inhibition of Accumbal Spiny Neurons by Extrasynaptic α4βδ GABA _A Receptors Modulates the Actions of Psychostimulants. Journal of Neuroscience, 2014, 34, 823-838.	3.6	57
8	Corticotropin-releasing factor promotes growth of brain norepinephrine neuronal processes through Rho GTPase regulators of the actin cytoskeleton in rat. European Journal of Neuroscience, 2006, 24, 2481-2490.	2.6	50
9	Neonatal rearing conditions distinctly shape locus coeruleus neuronal activity, dendritic arborization, and sensitivity to corticotrophin-releasing factor. International Journal of Neuropsychopharmacology, 2010, 13, 515.	2.1	43
10	The Free-movement pattern Y-maze: A cross-species measure of working memory and executive function. Behavior Research Methods, 2021, 53, 536-557.	4.0	43
11	GABAA Receptor Subtypes Regulate Stress-Induced Colon Inflammation in Mice. Gastroenterology, 2018, 155, 852-864.e3.	1.3	36
12	Extrasynaptic Glycine Receptors of Rodent Dorsal Raphe Serotonergic Neurons: A Sensitive Target for Ethanol. Neuropsychopharmacology, 2014, 39, 1232-1244.	5.4	35
13	Localization of GABAâ€A receptor alpha subunits on neurochemically distinct cell types in the rat locus coeruleus. European Journal of Neuroscience, 2011, 34, 250-262.	2.6	29
14	Molecular Characterization of GABA-A Receptor Subunit Diversity within Major Peripheral Organs and Their Plasticity in Response to Early Life Psychosocial Stress. Frontiers in Molecular Neuroscience, 2018, 11, 18.	2.9	27
15	Early-life adversity selectively impairs α2-GABAA receptor expression in the mouse nucleus accumbens and influences the behavioral effects of cocaine. Neuropharmacology, 2018, 141, 98-112.	4.1	25
16	A Synaptically Connected Hypothalamic Magnocellular Vasopressin-Locus Coeruleus Neuronal Circuit and Its Plasticity in Response to Emotional and Physiological Stress. Frontiers in Neuroscience, 2019, 13, 196.	2.8	25
17	Identification of intraneuronal amyloid beta oligomers in locus coeruleus neurons of Alzheimer's patients and their potential impact on inhibitory neurotransmitter receptors and neuronal excitability. Neuropathology and Applied Neurobiology, 2021, 47, 488-505.	3.2	25
18	Aberrant Location of Inhibitory Synaptic Marker Proteins in the Hippocampus of Dystrophin-Deficient Mice: Implications for Cognitive Impairment in Duchenne Muscular Dystrophy. PLoS ONE, 2014, 9, e108364.	2.5	24

JEROME D SWINNY

#	Article	IF	CITATIONS
19	Localisation and stress-induced plasticity of GABAA receptor subunits within the cellular networks of the mouse dorsal raphe nucleus. Brain Structure and Function, 2015, 220, 2739-2763.	2.3	15
20	TREK-1 Channel Expression in Smooth Muscle as a Target for Regulating Murine Intestinal Contractility: Therapeutic Implications for Motility Disorders. Frontiers in Physiology, 2018, 9, 157.	2.8	15
21	During postnatal development endogenous neurosteroids influence GABA-ergic neurotransmission of mouse cortical neurons. Neuropharmacology, 2016, 103, 163-173.	4.1	14
22	Dynamic Modulation of Mouse Locus Coeruleus Neurons by Vasopressin 1a and 1b Receptors. Frontiers in Neuroscience, 2018, 12, 919.	2.8	14
23	Localization of NG2 immunoreactive neuroglia cells in the rat locus coeruleus and their plasticity in response to stress. Frontiers in Neuroanatomy, 2014, 8, 31.	1.7	13
24	Spatiotemporal Distribution of GABAA Receptor Subunits Within Layer II of Mouse Medial Entorhinal Cortex: Implications for Grid Cell Excitability. Frontiers in Neuroanatomy, 2018, 12, 46.	1.7	9
25	Developmental and age-dependent plasticity of GABAA receptors in the mouse colon: Implications in colonic motility and inflammation. Autonomic Neuroscience: Basic and Clinical, 2019, 221, 102579.	2.8	9
26	Specific Dystrophins Selectively Associate with Inhibitory and Excitatory Synapses of the Mouse Cerebellum and their Loss Alters Expression of P2X7 Purinoceptors and Pro-Inflammatory Mediators. Cellular and Molecular Neurobiology, 2021, , 1.	3.3	4
27	Early-life stress influences acute and sensitized responses of adult mice to cocaine by interacting with GABAA α2 receptor expression. Behavioural Pharmacology, 2019, 30, 272-281.	1.7	3
28	Syndapin-2 mediated transcytosis of amyloid-β across the blood–brain barrier. Brain Communications, 2022, 4, fcac039.	3.3	3