
Stepan Lomov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6316809/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results. Composites Part A: Applied Science and Manufacturing, 2008, 39, 1037-1053.	7.6	490
2	Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance. Journal of Composite Materials, 2019, 53, 1579-1669.	2.4	451
3	Meso-FE modelling of textile composites: Road map, data flow and algorithms. Composites Science and Technology, 2007, 67, 1870-1891.	7.8	411
4	Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon, 2009, 47, 2914-2923.	10.3	381
5	Virtual textile composites software : Integration with micro-mechanical, permeability and structural analysis. Composites Science and Technology, 2005, 65, 2563-2574.	7.8	361
6	Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Composites Science and Technology, 2010, 70, 1346-1352.	7.8	260
7	Textile composites: modelling strategies. Composites Part A: Applied Science and Manufacturing, 2001, 32, 1379-1394.	7.6	227
8	Experimental determination of the permeability of textiles: A benchmark exercise. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1157-1168.	7.6	227
9	Micro-CT characterization of variability in 3D textile architecture. Composites Science and Technology, 2005, 65, 1920-1930.	7.8	215
10	Experimental determination of the permeability of engineering textiles: Benchmark II. Composites Part A: Applied Science and Manufacturing, 2014, 61, 172-184.	7.6	202
11	Textile geometry preprocessor for meso-mechanical models of woven composites. Composites Science and Technology, 2000, 60, 2083-2095.	7.8	183
12	The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix. Composites Part A: Applied Science and Manufacturing, 2010, 41, 532-538.	7.6	181
13	Full-field strain measurements in textile deformability studies. Composites Part A: Applied Science and Manufacturing, 2008, 39, 1232-1244.	7.6	180
14	Cluster analysis of acoustic emission signals for 2D and 3D woven glass/epoxy composites. Composite Structures, 2014, 116, 286-299.	5.8	171
15	The response of natural fibre composites to ballistic impact by fragment simulating projectiles. Composite Structures, 2007, 77, 232-240.	5.8	167
16	Quantification of the internal structure and automatic generation of voxel models of textile composites from X-ray computed tomography data. Composites Part A: Applied Science and Manufacturing, 2015, 69, 150-158.	7.6	159
17	A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 1: Materials, methods and principal results. Composites Part A: Applied Science and Manufacturing, 2009, 40, 1134-1143.	7.6	158
18	Nesting in textile laminates: geometrical modelling of the laminate. Composites Science and Technology, 2003, 63, 993-1007.	7.8	140

#	Article	IF	CITATIONS
19	Experimental methodology of study of damage initiation and development in textile composites in uniaxial tensile test. Composites Science and Technology, 2008, 68, 2340-2349.	7.8	140
20	Carbon composites based on multiaxial multiply stitched preforms. Part 1. Geometry of the preform. Composites Part A: Applied Science and Manufacturing, 2002, 33, 1171-1183.	7.6	137
21	Model of shear of woven fabric and parametric description of shear resistance of glass woven reinforcements. Composites Science and Technology, 2006, 66, 919-933.	7.8	137
22	Failure analysis of triaxial braided composite. Composites Science and Technology, 2009, 69, 1372-1380.	7.8	136
23	Full-field strain measurements for validation of meso-FE analysis of textile composites. Composites Part A: Applied Science and Manufacturing, 2008, 39, 1218-1231.	7.6	133
24	A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 2: Comprehensive experimental results. Composites Part A: Applied Science and Manufacturing, 2009, 40, 1144-1157.	7.6	124
25	Modelling of permeability of textile reinforcements: lattice Boltzmann method. Composites Science and Technology, 2004, 64, 1069-1080.	7.8	116
26	Full-field strain measurements at the micro-scale in fiber-reinforced composites using digital image correlation. Composite Structures, 2016, 140, 192-201.	5.8	115
27	Quasi-static tensile behavior and damage of carbon/epoxy composite reinforced with 3D non-crimp orthogonal woven fabric. Mechanics of Materials, 2013, 62, 14-31.	3.2	108
28	Picture Frame Test of Woven Composite Reinforcements with a Full-Field Strain Registration. Textile Reseach Journal, 2006, 76, 243-252.	2.2	106
29	Carbon composites based on multi-axial multi-ply stitched preforms. Part 4. Mechanical properties of composites and damage observation. Composites Part A: Applied Science and Manufacturing, 2005, 36, 1207-1221.	7.6	105
30	Internal geometry evaluation of non-crimp 3D orthogonal woven carbon fabric composite. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1301-1311.	7.6	100
31	Statistical analysis of real and simulated fibre arrangements in unidirectional composites. Composites Science and Technology, 2013, 87, 126-134.	7.8	98
32	Carbon composites based on multiaxial multiply stitched preforms. Part 3: Biaxial tension, picture frame and compression tests of the preforms. Composites Part A: Applied Science and Manufacturing, 2005, 36, 1188-1206.	7.6	96
33	Permeability of textile reinforcements: Simulation, influence of shear and validation. Composites Science and Technology, 2008, 68, 2804-2810.	7.8	93
34	Hierarchy of Textile Structures and Architecture of Fabric Geometric Models. Textile Reseach Journal, 2001, 71, 534-543.	2.2	89
35	The effect of carbon nanotubes on the damage development in carbon fiber/epoxy composites. Carbon, 2011, 49, 4650-4664.	10.3	89
36	Impact and residual after impact properties of carbon fiber/epoxy composites modified with carbon nanotubes. Composite Structures, 2014, 111, 488-496.	5.8	89

#	Article	IF	CITATIONS
37	Do high frequency acoustic emission events always represent fibre failure in CFRP laminates?. Composites Part A: Applied Science and Manufacturing, 2017, 103, 230-235.	7.6	84
38	Local damage in a 5-harness satin weave composite under static tension: Part II – Meso-FE modelling. Composites Science and Technology, 2010, 70, 1934-1941.	7.8	83
39	Carbon composites based on multiaxial multiply stitched preforms. Part 2. KES-F characterisation of the deformability of the preforms at low loads. Composites Part A: Applied Science and Manufacturing, 2003, 34, 359-370.	7.6	82
40	Stress concentrations in an impregnated fibre bundle with random fibre packing. Composites Science and Technology, 2013, 74, 113-120.	7.8	82
41	Prediction of linear and non-linear behavior of 3D woven composite using mesoscopic voxel models reconstructed from X-ray micro-tomography. Composite Structures, 2017, 179, 568-579.	5.8	82
42	Optical strain fields in shear and tensile testing of textile reinforcements. Composites Science and Technology, 2008, 68, 807-819.	7.8	81
43	Assessment of embedded element technique in meso-FE modelling of fibre reinforced composites. Composite Structures, 2014, 107, 436-446.	5.8	81
44	Compression of Woven Reinforcements: A Mathematical Model. Journal of Reinforced Plastics and Composites, 2000, 19, 1329-1350.	3.1	80
45	Experimental validation of forming simulations of fabric reinforced polymers using an unsymmetrical mould configuration. Composites Part A: Applied Science and Manufacturing, 2009, 40, 530-539.	7.6	80
46	A Self Adaptive Global Digital Image Correlation Algorithm. Experimental Mechanics, 2015, 55, 361-378.	2.0	80
47	Modelling evidence of stress concentration mitigation at the micro-scale in polymer composites by the addition of carbon nanotubes. Carbon, 2015, 82, 184-194.	10.3	80
48	Validation of x-ray microfocus computed tomography as an imaging tool for porous structures. Review of Scientific Instruments, 2008, 79, 013711.	1.3	79
49	Correlation of acoustic emission with optically observed damage in a glass/epoxy woven laminate under tensile loading. Composite Structures, 2015, 123, 45-53.	5.8	79
50	Study of nesting induced scatter of permeability values in layered reinforcement fabrics. Composites Part A: Applied Science and Manufacturing, 2004, 35, 1407-1418.	7.6	75
51	In-plane permeability characterization of engineering textiles based on radial flow experiments: A benchmark exercise. Composites Part A: Applied Science and Manufacturing, 2019, 121, 100-114.	7.6	75
52	Stochastic framework for quantifying the geometrical variability of laminated textile composites using micro-computed tomography. Composites Part A: Applied Science and Manufacturing, 2013, 44, 122-131.	7.6	74
53	Fatigue behavior of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass reinforced composites. Composites Science and Technology, 2010, 70, 2068-2076.	7.8	72
54	Local damage in a 5-harness satin weave composite under static tension: Part I – Experimental analysis. Composites Science and Technology, 2010, 70, 1926-1933.	7.8	69

#	Article	IF	CITATIONS
55	Fatigue tensile behavior of carbon/epoxy composite reinforced with non-crimp 3D orthogonal woven fabric. Composites Science and Technology, 2011, 71, 1961-1972.	7.8	66
56	Coupled meso-macro simulation of woven fabric local deformation during draping. Composites Part A: Applied Science and Manufacturing, 2019, 118, 267-280.	7.6	65
57	Cluster analysis of acoustic emission signals for 2D and 3D woven carbon fiber/epoxy composites. Journal of Composite Materials, 2016, 50, 1921-1935.	2.4	64
58	Interply hybrid composites with carbon fiber reinforced polypropylene and self-reinforced polypropylene. Composites Part A: Applied Science and Manufacturing, 2010, 41, 927-932.	7.6	63
59	Stochastic multi-scale modelling of textile composites based on internal geometry variability. Computers and Structures, 2013, 122, 55-64.	4.4	63
60	Experimental observations and finite element modelling of damage initiation and evolution in carbon/epoxy non-crimp fabric composites. Engineering Fracture Mechanics, 2008, 75, 2751-2766.	4.3	61
61	Permeability prediction for the meso–macro coupling in the simulation of the impregnation stage of Resin Transfer Moulding. Composites Part A: Applied Science and Manufacturing, 2010, 41, 29-35.	7.6	61
62	Characterization of the dynamic friction of woven fabrics: Experimental methods and benchmark results. Composites Part A: Applied Science and Manufacturing, 2014, 67, 289-298.	7.6	61
63	Multi-scale digital image correlation for detection and quantification of matrix cracks in carbon fiber composite laminates in the absence and presence of voids controlled by the cure cycle. Composites Part B: Engineering, 2018, 154, 138-147.	12.0	61
64	Micro-CT measurement of fibre misalignment: Application to carbon/epoxy laminates manufactured in autoclave and by vacuum assisted resin transfer moulding. Composites Part A: Applied Science and Manufacturing, 2018, 104, 14-23.	7.6	60
65	Strain mapping analysis of textile composites. Optics and Lasers in Engineering, 2009, 47, 360-370.	3.8	59
66	Damage development in woven carbon fiber/epoxy composites modified with carbon nanotubes under tension in the bias direction. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1635-1644.	7.6	59
67	Micro-CT analysis of internal geometry of chopped carbon fiber tapes reinforced thermoplastics. Composites Part A: Applied Science and Manufacturing, 2016, 91, 211-221.	7.6	58
68	Carbon composites based on multiaxial multiply stitched preforms. Part V: geometry of sheared biaxial fabrics. Composites Part A: Applied Science and Manufacturing, 2006, 37, 103-113.	7.6	56
69	Acoustic emission and damage mode correlation in textile reinforced PPS composites. Composite Structures, 2017, 163, 399-409.	5.8	56
70	Micro-CT analysis of the internal deformed geometry of a non-crimp 3D orthogonal weave E-glass composite reinforcement. Composites Part B: Engineering, 2014, 65, 147-157.	12.0	55
71	Stress magnification due to carbon nanotube agglomeration in composites. Composite Structures, 2015, 133, 246-256.	5.8	55
72	Micro-CT based structure tensor analysis of fibre orientation in random fibre composites versus high-fidelity fibre identification methods. Composite Structures, 2020, 235, 111818.	5.8	54

#	Article	IF	CITATIONS
73	Local strain in a 5-harness satin weave composite under static tension: Part I – Experimental analysis. Composites Science and Technology, 2011, 71, 1171-1179.	7.8	53
74	Internal geometry variability of two woven composites and related variability of the stiffness. Polymer Composites, 2012, 33, 1335-1350.	4.6	53
75	Numerical modelling of forming of a non-crimp 3D orthogonal weave E-glass composite reinforcement. Composites Part A: Applied Science and Manufacturing, 2015, 72, 207-218.	7.6	53
76	Multi-instrument in-situ damage monitoring in quasi-isotropic CFRP laminates under tension. Composite Structures, 2018, 196, 163-180.	5.8	53
77	The method of cells and the mechanical properties of textile composites. Composite Structures, 2011, 93, 1290-1299.	5.8	52
78	Micro-CT analysis of internal structure of sheared textile composite reinforcement. Composites Part A: Applied Science and Manufacturing, 2015, 73, 45-54.	7.6	51
79	Detailed characterization of voids in multidirectional carbon fiber/epoxy composite laminates using X-ray micro-computed tomography. Composites Part A: Applied Science and Manufacturing, 2019, 125, 105532.	7.6	51
80	Meso-level textile composites simulations: Open data exchange and scripting. Journal of Composite Materials, 2014, 48, 621-637.	2.4	50
81	Influence of fibre misalignment and voids on composite laminate strength. Journal of Composite Materials, 2015, 49, 2887-2896.	2.4	50
82	Computation of permeability of a non-crimp carbon textile reinforcement based on X-ray computed tomography images. Composites Part A: Applied Science and Manufacturing, 2016, 81, 289-295.	7.6	50
83	On the variability of permeability induced by reinforcement distortions and dual scale flow in liquid composite moulding: A review. Composites Part A: Applied Science and Manufacturing, 2019, 120, 188-210.	7.6	50
84	Experimental and Theoretical Characterization of the Geometry of Two-Dimensional Braided Fabrics. Textile Reseach Journal, 2002, 72, 706-712.	2.2	49
85	The effect of voids on matrix cracking in composite laminates as revealed by combined computations at the micro- and meso-scales. Composites Part A: Applied Science and Manufacturing, 2019, 117, 180-192.	7.6	49
86	Carbon composites based on multi-axial multi-ply stitched preforms – Part 6. Fatigue behaviour at low loads: Stiffness degradation and damage development. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1633-1645.	7.6	48
87	Inter-fiber stresses in composites with carbon nanotube grafted and coated fibers. Composites Science and Technology, 2015, 114, 79-86.	7.8	48
88	Damage in flax/epoxy quasi-unidirectional woven laminates under quasi-static tension. Journal of Composite Materials, 2015, 49, 403-413.	2.4	48
89	Deformability of a non-crimp 3D orthogonal weave E-glass composite reinforcement. Composites Science and Technology, 2012, 73, 9-18.	7.8	47
90	Eliminating the volume redundancy of embedded elements and yarn interpenetrations in meso-finite element modelling of textile composites. Computers and Structures, 2015, 152, 142-154.	4.4	47

#	Article	IF	CITATIONS
91	Experimentally validated stochastic geometry description for textile composite reinforcements. Composites Science and Technology, 2016, 122, 122-129.	7.8	47
92	Compressibility of carbon woven fabrics with carbon nanotubes/nanofibres grown on the fibres. Composites Science and Technology, 2011, 71, 315-325.	7.8	46
93	Pseudo-grain discretization and full Mori Tanaka formulation for random heterogeneous media: Predictive abilities for stresses in individual inclusions and the matrix. Composites Science and Technology, 2013, 87, 86-93.	7.8	46
94	Can carbon nanotubes grown on fibers fundamentally change stress distribution in a composite?. Composites Part A: Applied Science and Manufacturing, 2014, 63, 32-34.	7.6	46
95	Correlation of microstructure and mechanical properties of various fabric reinforced geo-polymer composites after exposure to elevated temperature. Ceramics International, 2015, 41, 12115-12129.	4.8	46
96	Fatigue and post-fatigue behaviour of carbon/epoxy non-crimp fabric composites. Composites Part A: Applied Science and Manufacturing, 2009, 40, 251-259.	7.6	45
97	A Predictive Model for the Fabric-to-Yarn Bending Stiffness Ratio of a Plain-Woven Set Fabric. Textile Reseach Journal, 2000, 70, 1088-1096.	2.2	44
98	Pore network modeling of permeability for textile reinforcements. Polymer Composites, 2003, 24, 344-357.	4.6	44
99	Stochastic characterisation methodology for 3-D textiles based on micro-tomography. Composite Structures, 2017, 173, 44-52.	5.8	43
100	X-ray computed tomography characterization of manufacturing induced defects in a glass/polyester pultruded profile. Composite Structures, 2018, 195, 74-82.	5.8	43
101	A progressive damage model of textile composites on meso-scale using finite element method: Fatigue damage analysis. Computers and Structures, 2015, 152, 96-112.	4.4	42
102	Fatigue and post-fatigue stress–strain analysis of a 5-harness satin weave carbon fibre reinforced composite. Composites Science and Technology, 2013, 74, 20-27.	7.8	41
103	Effective anisotropic stiffness of inclusions with debonded interface for Eshelby-based models. Composite Structures, 2015, 131, 692-706.	5.8	41
104	The Master SN curve approach – A hybrid multi-scale fatigue simulation of short fiber reinforced composites. Composites Part A: Applied Science and Manufacturing, 2016, 91, 510-518.	7.6	41
105	Carbon composites based on multi-axial multi-ply stitched preforms. Part 7: Mechanical properties and damage observations in composites with sheared reinforcement. Composites Part A: Applied Science and Manufacturing, 2008, 39, 1380-1393.	7.6	40
106	Simulation of Multi-layered Composites Forming. International Journal of Material Forming, 2010, 3, 695-698.	2.0	40
107	Hierarchical lightweight composite materials for structural applications. MRS Bulletin, 2016, 41, 672-677.	3.5	40
108	Stress distribution in outer and inner plies of textile laminates and novel boundary conditions for	7.6	39

unit cell analysis. Composites Part A: Applied Science and Manufacturing, 2010, 41, 571-580.

#	Article	IF	CITATIONS
109	Formability of a non-crimp 3D orthogonal weave E-glass composite reinforcement. Composites Part A: Applied Science and Manufacturing, 2014, 61, 76-83.	7.6	39
110	X-ray micro-computed-tomography characterization of cracks induced by thermal cycling in non-crimp 3D orthogonal woven composite materials with porosity. Composites Part A: Applied Science and Manufacturing, 2018, 112, 100-110.	7.6	39
111	Strain-rate sensitivity and stress relaxation of hybrid self-reinforced polypropylene composites under bending loads. Composite Structures, 2019, 209, 802-810.	5.8	39
112	A comparative study of twill weave reinforced composites under tension–tension fatigue loading: Experiments and meso-modelling. Composite Structures, 2016, 135, 306-315.	5.8	38
113	The Simulation of the Geometry of Two-component Yarns. Part I: The Mechanics of Strand Compression: Simulating Yarn Cross-section Shape. Journal of the Textile Institute, 1997, 88, 118-131.	1.9	37
114	Drape-ability characterization of textile composite reinforcements using digital image correlation. Optics and Lasers in Engineering, 2009, 47, 343-351.	3.8	37
115	Structurally stitched NCF preforms: Quasi-static response. Composites Science and Technology, 2009, 69, 2701-2710.	7.8	37
116	Strain mapping at the micro-scale in hierarchical polymer composites with aligned carbon nanotube grafted fibers. Composites Science and Technology, 2016, 137, 24-34.	7.8	37
117	On modelling of damage evolution in textile composites on meso-level via property degradation approach. Composites Part A: Applied Science and Manufacturing, 2007, 38, 2433-2442.	7.6	36
118	Modelling of Two-component Yarns Part I: The Compressibility of Yarns. Journal of the Textile Institute, 1997, 88, 373-384.	1.9	35
119	The Simulation of the Geometry of a Two-component Yarn Part II: Fibre Distribution in the Yarn Cross-section. Journal of the Textile Institute, 1997, 88, 352-372.	1.9	35
120	Monitoring of acoustic emission damage during tensile loading of 3D woven carbon/epoxy composites. Textile Reseach Journal, 2014, 84, 1373-1384.	2.2	35
121	Assessment of the mechanical behaviour of glass fibre composites with a tough polydicyclopentadiene (PDCPD) matrix. Composites Part A: Applied Science and Manufacturing, 2015, 78, 191-200.	7.6	34
122	On the closed form expression of the Mori–Tanaka theory prediction for the engineering constants of a unidirectional fiber-reinforced ply. Composite Structures, 2016, 142, 1-6.	5.8	34
123	A model for the compression of a random assembly of carbon nanotubes. Carbon, 2011, 49, 2079-2091.	10.3	33
124	Quasi-static and fatigue tensile behavior of a 3D rotary braided carbon/epoxy composite. Journal of Composite Materials, 2013, 47, 3195-3209.	2.4	33
125	Meso-FE modelling of textile composites and X-ray tomography. Journal of Materials Science, 2020, 55, 16969-16989.	3.7	33
126	Automated reconstruction and conformal discretization of 3D woven composite CT scans with local fiber volume fraction control. Composite Structures, 2020, 248, 112438.	5.8	33

#	Article	IF	CITATIONS
127	Combining digital image correlation with X-ray computed tomography for characterization of fiber orientation in unidirectional composites. Composites Part A: Applied Science and Manufacturing, 2021, 142, 106234.	7.6	33
128	Non-crimp fabric composites. , 2011, , .		33
129	Impact and post impact behavior of fabric reinforced geopolymer composite. Construction and Building Materials, 2016, 127, 111-124.	7.2	32
130	Carbon fibre sheet moulding compounds with high in-mould flow: Linking morphology to tensile and compressive properties. Composites Part A: Applied Science and Manufacturing, 2019, 126, 105600.	7.6	32
131	A reference specimen for permeability measurements of fibrous reinforcements for RTM. Composites Part A: Applied Science and Manufacturing, 2009, 40, 244-250.	7.6	31
132	Compressibility of carbon fabrics with needleless electrospun PAN nanofibrous interleaves. EXPRESS Polymer Letters, 2016, 10, 25-35.	2.1	31
133	Original mechanism of failure initiation revealed through modelling of naturally occurring microstructures. Journal of the Mechanics and Physics of Solids, 2010, 58, 735-750.	4.8	30
134	Fatigue and post-fatigue tensile behaviour of non-crimp stitched and unstitched carbon/epoxy composites. Composites Science and Technology, 2010, 70, 2216-2224.	7.8	30
135	Evolution of carbon nanotube dispersion in preparation of epoxy-based composites: From a masterbatch to a nanocomposite. EXPRESS Polymer Letters, 2014, 8, 596-608.	2.1	30
136	Local strain in a 5-harness satin weave composite under static tension: Part II – Meso-FE analysis. Composites Science and Technology, 2011, 71, 1217-1224.	7.8	29
137	The influence of the stitching pattern on the internal geometry, quasi-static and fatigue mechanical properties of glass fibre non-crimp fabric composites. Composites Part A: Applied Science and Manufacturing, 2014, 56, 272-279.	7.6	29
138	Quasi-unidirectional flax composite reinforcement: Deformability and complex shape forming. Composites Science and Technology, 2015, 110, 76-86.	7.8	29
139	Model of internal geometry of textile fabrics: Data structure and virtual reality implementation. Journal of the Textile Institute, 2007, 98, 1-13.	1.9	28
140	Morphology and fracture behavior of POM modified epoxy matrices and their carbon fiber composites. Composites Science and Technology, 2015, 110, 8-16.	7.8	28
141	Internal geometry of woven composite laminates with "fuzzy―carbon nanotube grafted fibers. Composites Part A: Applied Science and Manufacturing, 2016, 88, 295-304.	7.6	28
142	Modelling the geometry of textile reinforcements for composites: WiseTex. , 2011, , 200-238.		27
143	Predicting permeability based on flow simulations and textile modelling techniques: Comparison with experimental values and verification of FlowTex solver using Ansys CFX. Journal of Composite Materials, 2016, 50, 601-615.	2.4	27
144	Damage development in woven carbon fibre thermoplastic laminates with PPS and PEEK matrices: A comparative study. Journal of Composite Materials, 2017, 51, 637-647.	2.4	27

#	Article	IF	CITATIONS
145	Hybrid composites of aligned discontinuous carbon fibers and self-reinforced polypropylene under tensile loading. Composites Part A: Applied Science and Manufacturing, 2019, 123, 97-107.	7.6	27
146	Detailed experimental validation and benchmarking of six models for longitudinal tensile failure of unidirectional composites. Composite Structures, 2022, 279, 114828.	5.8	27
147	Loading direction dependence of the tensile stiffness, strength and fatigue life of biaxial carbon/epoxy NCF composites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 16-21.	7.6	26
148	A feasibility study of the Master SN curve approach for short fiber reinforced composites. International Journal of Fatigue, 2016, 91, 264-274.	5.7	26
149	On the variability of mesoscale permeability of a 2/2 twill carbon fabric induced by variability of the internal geometry. Composites Part A: Applied Science and Manufacturing, 2017, 101, 394-407.	7.6	26
150	A thick-walled sheet moulding compound automotive component: Manufacturing and performance. Composites Part A: Applied Science and Manufacturing, 2020, 128, 105688.	7.6	26
151	Single carbon and glass fibre properties characterised using large data sets obtained through automated single fibre tensile testing. Composites Part A: Applied Science and Manufacturing, 2021, 145, 106389.	7.6	26
152	Tensile behaviour of thermally bonded nonwoven structures: model description. Journal of Materials Science, 2010, 45, 2274-2284.	3.7	25
153	Geometrical characterization and micro-structural modeling of short steel fiber composites. Composites Part A: Applied Science and Manufacturing, 2014, 67, 171-180.	7.6	25
154	Multi-scale modelling strategy for textile composites based on stochastic reinforcement geometry. Computer Methods in Applied Mechanics and Engineering, 2016, 310, 906-934.	6.6	25
155	The interplay between multiple toughening mechanisms in nanocomposites with spatially distributed and oriented carbon nanotubes as revealed by dual-scale simulations. Carbon, 2019, 142, 141-149.	10.3	25
156	Compaction behaviour of dense sheared woven preforms: Experimental observations and analytical predictions. Composites Part A: Applied Science and Manufacturing, 2014, 64, 167-176.	7.6	24
157	Discontinuities as a way to influence the failure mechanisms and tensile performance of hybrid carbon fiber/self-reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 2018, 107, 354-365.	7.6	24
158	Debonding at the fiber/matrix interface in carbon nanotube reinforced composites: Modelling investigation. Computational Materials Science, 2019, 159, 412-419.	3.0	24
159	Benchmark Study of Finite Element Models for Simulating the Thermostamping of Woven-Fabric Reinforced Composites. International Journal of Material Forming, 2010, 3, 683-686.	2.0	23
160	Impact and post-impact properties of a carbon fibre non-crimp fabric and a twill weave composite. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1019-1026.	7.6	23
161	Simulation of the cross-correlated positions of in-plane tow centroids in textile composites based on experimental data. Composite Structures, 2014, 116, 75-83.	5.8	23
162	Influence of cooling rate on the properties of carbon fiber unidirectional composites with polypropylene, polyamide 6, and polyphenylene sulfide matrices. Advanced Composite Materials, 2020, 29, 101-113.	1.9	23

#	Article	IF	CITATIONS
163	Experimental characterisation of textile compaction response: A benchmark exercise. Composites Part A: Applied Science and Manufacturing, 2021, 142, 106243.	7.6	23
164	A multi-layer resin film infusion process to control CNTs distribution and alignment for improving CFRP interlaminar fracture toughness. Composite Structures, 2021, 260, 113510.	5.8	23
165	A predictive model for the penetration force of a woven fabric by a needle. International Journal of Clothing Science and Technology, 1998, 10, 91-103.	1.1	22
166	Forming simulation of a thermoplastic commingled woven textile on a double dome. International Journal of Material Forming, 2008, 1, 965-968.	2.0	22
167	Compressibility of nanofibre-grafted alumina fabric and yarns: Aligned carbon nanotube forests. Composites Science and Technology, 2014, 90, 57-66.	7.8	22
168	Micro-scale finite element analysis of stress concentrations in steel fiber composites under transverse loading. Journal of Composite Materials, 2015, 49, 1057-1069.	2.4	22
169	Investigation of interply shear in composite forming. International Journal of Material Forming, 2008, 1, 957-960.	2.0	21
170	Nano-engineered composites: a multiscale approach for adding toughness to fibre reinforced composites. Procedia Engineering, 2011, 10, 3252-3258.	1.2	21
171	Quasi-UD glass fibre NCF composites for wind energy applications: a review of requirements and existing fatigue data for blade materials. Mechanics and Industry, 2013, 14, 175-189.	1.3	21
172	A progressive damage model of textile composites on meso-scale using finite element method: static damage analysis. Journal of Composite Materials, 2014, 48, 3091-3109.	2.4	21
173	Full-field strain measurements and meso-FE modelling of hybrid carbon/self-reinforced polypropylene. Composite Structures, 2015, 132, 864-873.	5.8	21
174	On the stochastic variations of intra-tow permeability induced by internal geometry variability in a 2/2 twill carbon fabric. Composites Part A: Applied Science and Manufacturing, 2017, 101, 444-458.	7.6	21
175	Ply fragmentation in unidirectional hybrid composites linked to stochastic fibre behaviour: A dual-scale model. Composites Science and Technology, 2019, 181, 107702.	7.8	21
176	A combined use of embedded and cohesive elements to model damage development in fibrous composites. Composite Structures, 2019, 223, 110921.	5.8	21
177	Unit cell modelling of textile laminates with arbitrary inter-ply shifts. Composites Science and Technology, 2011, 72, 14-20.	7.8	20
178	Micro-CT analysis of the orientation unevenness in randomly chopped strand composites in relation to the strand length. Composite Structures, 2018, 206, 865-875.	5.8	20
179	Tensile behaviour of nonwoven structures: comparison with experimental results. Journal of Materials Science, 2010, 45, 6643-6652.	3.7	19
180	Identification of the flax fibre modulus based on an impregnated quasi-unidirectional fibre bundle test and X-ray computed tomography. Composites Science and Technology, 2017, 151, 124-130.	7.8	19

#	Article	IF	CITATIONS
181	3D digital image correlation measurements during shaping of a non-crimp 3D orthogonal woven E-glass reinforcement. International Journal of Material Forming, 2014, 7, 439-446.	2.0	18
182	Mean-field based micro-mechanical modelling of short wavy fiber reinforced composites. Composites Part A: Applied Science and Manufacturing, 2016, 91, 472-483.	7.6	18
183	Modelling of thermoplastic polymer failure in fiber reinforced composites. Composite Structures, 2017, 163, 293-301.	5.8	18
184	A parametric study assessing performance of eXtended Finite Element Method in application to the cracking process in cross-ply composite laminates. Composite Structures, 2018, 187, 489-497.	5.8	18
185	Pseudo-ductile unidirectional high modulus/high strength carbon fibre hybrids using conventional ply thickness prepregs. Composites Part B: Engineering, 2020, 198, 108213.	12.0	18
186	Digital volume correlation for meso/micro in-situ damage analysis in carbon fiber reinforced composites. Composites Science and Technology, 2021, 213, 108944.	7.8	18
187	Homogenisation of a sheared unit cell of textile composites. Revue Europeenne Des Elements, 2005, 14, 709-728.	0.1	17
188	Flexural behaviour of corrugated panels of self-reinforced polypropylene hybridised with carbon fibre: An experimental and modelling study. Composites Part B: Engineering, 2018, 153, 437-444.	12.0	17
189	Bio-inspired design for enhanced damage tolerance of self-reinforced polypropylene/carbon fibre polypropylene hybrid composites. Composites Part A: Applied Science and Manufacturing, 2019, 121, 341-352.	7.6	17
190	Digital image correlation assisted characterization of Mode I fatigue delamination in composites. Composite Structures, 2020, 253, 112746.	5.8	17
191	Nesting effect on the mode I fracture toughness of woven laminates. Composites Part A: Applied Science and Manufacturing, 2015, 74, 166-173.	7.6	16
192	Carbon Fiber Composites Based on Multiâ€Phase Epoxy/PES Matrices with Carbon Nanotubes: Morphology and Interlaminar Fracture Toughness Characterization. Advanced Engineering Materials, 2016, 18, 2040-2046.	3.5	16
193	Mesh superposition applied to meso-FE modelling of fibre-reinforced composites: Cross-comparison of implementations. International Journal for Numerical Methods in Engineering, 2017, 111, 1003-1024.	2.8	16
194	Spatial distribution and orientation of nanotubes for suppression of stress concentrations optimized using genetic algorithm and finite element analysis. Materials and Design, 2018, 158, 136-146.	7.0	16
195	Compression resistance and hysteresis of carbon fibre tows with grown carbon nanotubes/nanofibres. Composites Science and Technology, 2011, 71, 1746-1753.	7.8	15
196	Weft knitted loop geometry of glass and steel fiber fabrics measured with X-ray micro-computer tomography. Textile Reseach Journal, 2014, 84, 500-512.	2.2	15
197	Localization of carbon nanotubes in resin rich zones of a woven composite linked to the dispersion state. Nanocomposites, 2015, 1, 204-213.	4.2	15
198	Methodology of dry and wet compressibility measurement. Composites Part A: Applied Science and Manufacturing, 2020, 128, 105672.	7.6	15

#	Article	IF	CITATIONS
199	When does nanotube grafting on fibers benefit the strength and toughness of composites?. Composites Science and Technology, 2020, 188, 107989.	7.8	15
200	Mode I and II interlaminar critical energy release rates in all-carbon interlayer unidirectional fibre-hybrids based on ultrahigh-modulus and high-strength fibres. Composite Structures, 2020, 236, 111886.	5.8	15
201	Fiber break model for tension-tension fatigue of unidirectional composites. Composites Part B: Engineering, 2021, 220, 108970.	12.0	15
202	Structure–property relations for balsa wood as a function of density: modelling approach. Archive of Applied Mechanics, 2014, 84, 789-805.	2.2	14
203	A statistical treatment of the loss of stiffness during cyclic loading for short fiber reinforced injection molded composites. Composites Part B: Engineering, 2016, 103, 40-50.	12.0	14
204	Micro-CT analysis of deviations in fiber orientation and composite stiffness near the microvascular channels embedded in glass-fiber reinforced composites. Composite Structures, 2020, 237, 111896.	5.8	14
205	Blind benchmarking of seven longitudinal tensile failure models for two virtual unidirectional composites. Composites Science and Technology, 2021, 202, 108555.	7.8	14
206	Picture frame shear tests on woven textile composite reinforcements with controlled pretension. AIP Conference Proceedings, 2007, , .	0.4	13
207	Structurally stitched woven preforms: experimental characterisation, geometrical modelling, and FE analysis. Plastics, Rubber and Composites, 2009, 38, 98-105.	2.0	13
208	Optimizing the deepdrawing of multilayered woven fabric composites. International Journal of Material Forming, 2009, 2, 153-156.	2.0	13
209	Determination of the mechanical properties of textile-reinforced composites taking into account textile forming parameters. International Journal of Material Forming, 2010, 3, 1351-1361.	2.0	13
210	Finite element modelling of SMA textiles: superelastic behaviour. Journal of the Textile Institute, 2011, 102, 232-247.	1.9	13
211	Fatigue Life Simulation on Fiber Reinforced Composites - Overview and Methods of Analysis for the Automotive Industry. SAE International Journal of Materials and Manufacturing, 0, 5, 205-214.	0.3	13
212	Interface strength of glass fibers in polypropylene: Dependence on the cooling rate and the degree of crystallinity. Polymer Composites, 2020, 41, 1310-1322.	4.6	13
213	Sustainable composites: Processing of coir fibres and application in hybrid-fibre composites. Journal of Composite Materials, 2020, 54, 1947-1960.	2.4	13
214	Self-diagnostic carbon nanocomposites manufactured from industrial epoxy masterbatches. Composite Structures, 2021, 259, 113244.	5.8	13
215	Compression behaviour of a fibre bundle with grafted carbon nanotubes. Carbon, 2011, 49, 4458-4465.	10.3	12
216	In-situ imaging of inter- and intra-laminar damage in open-hole tension tests of carbon fibre-reinforced composites. Composite Structures, 2020, 244, 112302.	5.8	12

#	Article	IF	CITATIONS
217	Twoâ€component multilayered woven fabrics: weaves, properties and computer simulation. International Journal of Clothing Science and Technology, 1997, 9, 98-112.	1.1	11
218	Elastic compliance of a partially debonded circular inhomogeneity. International Journal of Fracture, 2005, 131, 211-229.	2.2	11
219	On Stress Intensity Factors of Multiple Cracks at Small Distances in 2-D Problems. International Journal of Fracture, 2007, 143, 377-384.	2.2	11
220	An environmental scanning electron microscope study of a through-air bonded structure under tensile loading. Journal of the Textile Institute, 2008, 99, 235-241.	1.9	11
221	Nesting effect on the mode II fracture toughness of woven laminates. Composites Part A: Applied Science and Manufacturing, 2015, 74, 174-181.	7.6	11
222	Engineering tensile behavior of hybrid carbon fiber/self-reinforced polypropylene composites by bio-inspired fiber discontinuities. Composites Part B: Engineering, 2019, 178, 107502.	12.0	11
223	Identification and validation of a hyperelastic model for self-reinforced polypropylene draping. International Journal of Material Forming, 2021, 14, 55-65.	2.0	11
224	Split-disk test with 3D Digital Image Correlation strain measurement for filament wound composites. Composite Structures, 2021, 263, 113686.	5.8	11
225	Deformation and failure of pseudo-ductile quasi-isotropic all-carbon hybrid FRPS with an open hole under tension. Composites Part B: Engineering, 2022, 237, 109870.	12.0	11
226	Modelling of Two-component Yarns Part II: Creation of the Visual Images of Yarns. Journal of the Textile Institute, 1997, 88, 385-399.	1.9	10
227	Study of Yarn Snarling Part I: Critical Parameters of Snarling. Journal of the Textile Institute, 2002, 93, 341-365.	1.9	10
228	Mechanical Behaviours for Textile Composites by FEM Based on Damage Mechanics. Key Engineering Materials, 2007, 334-335, 257-260.	0.4	10
229	Composites Forming. , 2007, , 61-79.		10
230	Compressibility of CNT-Grafted Fibrous Reinforcements: A Theory. International Journal of Material Forming, 2010, 3, 627-630.	2.0	10
231	Deformability of textile performs in the manufacture of non-crimp fabric composites. , 2011, , 117-144e.		10
232	Microscale material variability and its effect on longitudinal tensile failure of unidirectional carbon fibre composites. Composite Structures, 2021, 261, 113300.	5.8	10
233	Numerical artifacts of Fast Fourier Transform solvers for elastic problems of multi-phase materials: their causes and reduction methods. Computational Mechanics, 2021, 67, 1661-1683.	4.0	10
234	Clusters and avalanches of fibre breaks in a model of an impregnated unidirectional fibre bundle under tension. International Journal of Solids and Structures, 2021, 225, 111061.	2.7	10

#	Article	IF	CITATIONS
235	Advances in composite forming through 25Âyears of ESAFORM. International Journal of Material Forming, 2022, 15, 1.	2.0	10
236	Mechanical properties of non-crimp fabric (NCF) based composites: stiffness and strength. , 2011, , 263-288.		9
237	On-line analysis of cracking in cortical bone under wedge penetration. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2012, 226, 709-717.	1.8	9
238	Analysis of stress concentrations in transversely loaded steel-fiber composites with nano-reinforced interphases. International Journal of Solids and Structures, 2018, 130-131, 248-257.	2.7	9
239	Weld lines in tow-based sheet moulding compounds tensile properties: Morphological detrimental factors. Composites Part A: Applied Science and Manufacturing, 2020, 139, 106109.	7.6	9
240	Damage accumulation in textile composites. , 2016, , 41-59.		8
241	Additively manufactured three dimensional reference porous media for the calibration of permeability measurement set-ups. Composites Part A: Applied Science and Manufacturing, 2020, 139, 106119.	7.6	8
242	An incremental-onset model for fatigue delamination propagation in composite laminates. Composites Science and Technology, 2020, 200, 108394.	7.8	8
243	Surface quality of printed porous materials for permeability rig calibration. Materials and Manufacturing Processes, 2022, 37, 548-558.	4.7	8
244	Inpainting micro-CT images of fibrous materials using deep learning. Computational Materials Science, 2021, 197, 110551.	3.0	8
245	Computation of Permeability of Textile with Experimental Validation for Monofilament and Non Crimp Fabrics. Studies in Computational Intelligence, 2007, , 93-109.	0.9	8
246	Conductive CNT-polymer nanocomposites digital twins for self-diagnostic structures: Sensitivity to CNT parameters. Composite Structures, 2022, 291, 115617.	5.8	8
247	The Fractal Dimension of X-Ray Tomographic Sections of a Woven Composite. Advanced Composites Letters, 2004, 13, 096369350401300.	1.3	7
248	Stereolithography Specimen to Calibrate Permeability Measurements for RTM Flow Simulations. Advanced Composites Letters, 2006, 15, 096369350601500.	1.3	7
249	Mode I fatigue fracture toughness of woven laminates: Nesting effect. Composite Structures, 2015, 133, 226-234.	5.8	7
250	Non-symmetric stiffness tensor prediction by the Mori–Tanaka scheme – Comments on the article "Effective anisotropic stiffness of inclusions with debonded interface for Eshelby-based models― [Composite Structures 131 (2015) 692–706]. Composite Structures, 2015, 134, 1118-1119.	5.8	7
251	Meso-macro simulation of the woven fabric local deformation in draping. AIP Conference Proceedings, 2018, , .	0.4	7
252	A dataset of void characteristics in multidirectional carbon fiber/epoxy composite laminates, obtained using X-ray micro-computed tomography. Data in Brief, 2019, 27, 104686.	1.0	7

4

#	Article	IF	CITATIONS
253	Morphology-induced fatigue crack arresting in carbon fibre sheet moulding compounds. International Journal of Fatigue, 2020, 134, 105510.	5.7	7
254	On Surface Fibre-Free Zones and Irregularity of Piercing Pattern in Structurally Stitched NCF Preforms. Advanced Composites Letters, 2006, 15, 096369350601500.	1.3	6
255	Simulating and validating the draping of woven fiber reinforced polymers. International Journal of Material Forming, 2008, 1, 961-964.	2.0	6
256	Deformability of a Flax Reinforcement for Composite Materials. Key Engineering Materials, 0, 611-612, 257-264.	0.4	6
257	Experimental Characterization of Steel Fibre Knitted Fabrics Deformability. Experimental Techniques, 2015, 39, 16-22.	1.5	6
258	Enhancing Strength and Toughness of Hierarchical Composites through Optimization of Position and Orientation of Nanotubes: A Computational Study. Journal of Composites Science, 2020, 4, 34.	3.0	6
259	Anisotropy of fabrics and fusible interlinings. International Journal of Clothing Science and Technology, 1998, 10, 379-390.	1.1	5
260	Relation Between Elastic Properties and Stress Intensity Factors for Composites with Rigid-Line Reinforcements. International Journal of Fracture, 2010, 161, 205-212.	2.2	5
261	<i>C</i> ^{<i>n</i>} â€continuity in Digital Image Correlation: Implementation and Validation of <i>C</i> ^{â^ 1} , <i>C</i> ⁰ and <i>C</i> ¹ Algorithms. Strain, 2015, 51, 444-458.	2.4	5
262	Modelling the structure and behaviour of 2D and 3D woven composites used in aerospace applications. , 2015, , 21-52.		5
263	Stress distribution around a broken carbon fibre and how it is affected by carbon nanotubes in the interface region. Composite Interfaces, 2019, 26, 507-524.	2.3	5
264	A dataset of micro-scale tomograms of unidirectional glass fiber/epoxy and carbon fiber/epoxy composites acquired via synchrotron computed tomography during in-situ tensile loading. Data in Brief, 2021, 34, 106672.	1.0	5
265	Tuning the through-thickness orientation of 1D nanocarbons to enhance the electrical conductivity and ILSS of hierarchical CFRP composites. Science and Engineering of Composite Materials, 2021, 28, 453-465.	1.4	5
266	Error Assessment in Permeability Measurement Using Radial Flow Method. Advanced Composites Letters, 2009, 18, 096369350901800.	1.3	5
267	Influence of Cooling Rate on the Properties of Carbon Fiber Unidirectional Composites with Polypropylene, Polyamide 6, and Polyphenylene Sulfide Matrices. Journal of the Japan Society for Composite Materials, 2018, 44, 123-128.	0.2	5
268	The Numerical Prediction of the Tensile Behaviour of Multilayer Woven Tapes Made by Multifilament Yarns. , 2016, , 69-80.		5
269	A synchrotron computed tomography dataset for validation of longitudinal tensile failure models based on fibre break and cluster development. Data in Brief, 2021, 39, 107590.	1.0	5

270 Virtual testing for material formability. , 2007, , 80-116.

#	Article	IF	CITATIONS
271	Theory of Fibre Contacts and their Applications to the Properties of Nonwoven Structures. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, 11, .	1.0	4
272	In-Situ Measurements of Fabric Thickness Evolution During Draping. AIP Conference Proceedings, 2011,	0.4	4
273	A stochastic multi-scale framework for textile composites to evaluate the stiffness tensor. , 2012, , .		4
274	Experimental Study of Steel and Glass Knitted Fabrics Thickness under Pre-Strain and Shear. Key Engineering Materials, 0, 554-557, 385-390.	0.4	4
275	Implementation of Convergence in Adaptive Global Digital Image Correlation. Experimental Mechanics, 2016, 56, 797-811.	2.0	4
276	Quantification of micro-CT images of textile reinforcements. AIP Conference Proceedings, 2017, , .	0.4	4
277	Applications of CT for Non-destructive Testing and Materials Characterization. , 2018, , 267-331.		4
278	Staggered ply discontinuities for tailoring the tensile behavior of hybrid carbon fiber/self-reinforced polypropylene composites: A study of pattern parameters. Composites Part A: Applied Science and Manufacturing, 2019, 125, 105551.	7.6	4
279	Strength analysis of unidirectional composites to explain fiber bundle splitting. Advanced Composite Materials, 2020, 29, 351-362.	1.9	4
280	Direct Mori-Tanaka calculations of strains in ellipsoidal inclusions with multiple orientations – Comments on the papers: Naili, G. et al. Comp Sci Tech, 187: 107942, 2020 (https://doi.org/10.1016/j.compscitech.2019.107942) and Jain, A. et al., Comp Sci Tech, 87: 86–93, 2013 (https://doi.org/10.1016/j.compscitech.2013.08.009). Composites Science and Technology, 2020, 190, 108068.	7.8	4
281	CNT/Epoxy-Masterbatch Based Nanocomposites: Thermal and Electrical Properties. , 2021, , .		4
282	Perméabilité des renforts fibreux : Étude des écarts expériences-prédictions. Revue Des Composites Des Materiaux Avances, 2005, 15, 385-400.	Et 0.6	4
283	Tensile failure strain and microstructure of unidirectional carbon fibre non-crimp fabric composites. Composites Part B: Engineering, 2022, 243, 110123.	12.0	4
284	Measurement of the rorsional strength of chemical fibres and critical parameters of formation of snarls. Fibre Chemistry, 1999, 31, 380-386.	0.2	3
285	User-Friendly Permeability Predicting Software for Technical Textiles. Research Journal of Textile and Apparel, 2009, 13, 19-27.	1.1	3
286	Biaxial extension of knitted steel fibre fabrics. , 2011, , .		3
287	Internal Structure of the Sheared Textile Composite Reinforcement: Analysis Using X-Ray Tomography. Key Engineering Materials, 2015, 651-653, 325-330.	0.4	3
288	Variability of flax fibre morphology and mechanical properties in injection moulded short straw flax fibre-reinforced PP composites. Journal of Composite Materials, 2017, 51, 3337-3349.	2.4	3

#	Article	IF	CITATIONS
289	Viscoelastic Behaviour of Self-reinforced Polypropylene Composites under Bending Loads. Procedia Structural Integrity, 2018, 13, 1999-2004.	0.8	3
290	Hierarchical design of structural composite materials down to the nanoscale via experimentation and modelling. IOP Conference Series: Materials Science and Engineering, 0, 406, 012002.	0.6	3
291	Micro-scale numerical study of fiber/matrix debonding in steel fiber composites. Journal of Engineered Fibers and Fabrics, 2020, 15, 155892502091072.	1.0	3
292	Stochastic Characterisation of the In-Plane Tow Centroid in Textile Composites to Quantify the Multi-scale Variation in Geometry. , 2014, , 187-202.		3
293	Fatigue damage evolution inÂ3DÂtextile composites. , 2015, , 223-253.		3
294	Calculation of the porosity of single- and multi-ply cloth made of chemical fibres. Fibre Chemistry, 1998, 30, 342-347.	0.2	2
295	Study of Yarn Snarling Part II: Mathematical Modelling. Journal of the Textile Institute, 2002, 93, 366-385.	1.9	2
296	Measurement of local deformations on thermoformed composite parts under different process conditions. AIP Conference Proceedings, 2007, , .	0.4	2
297	Understanding and modelling the effect of stitching on the geometry of non-crimp fabrics. , 2011, , 84-102.		2
298	Modelling of the permeability of non-crimp fabrics for composites. , 2011, , 242-260e.		2
299	Compression Behaviour of Steel Fibre Knitted Fabrics. Key Engineering Materials, 2012, 504-506, 273-276.	0.4	2
300	Variability in Composite Materials Properties. Applied Mechanics and Materials, 0, 807, 23-33.	0.2	2
301	Modelling high-cycle fatigue ofÂtextile composites on the unit cell level. , 2015, , 327-349.		2
302	FROM A VIRTUAL TEXTILE TO A VIRTUAL WOVEN COMPOSITE. Computational and Experimental Methods in Structures, 2015, , 109-139.	0.3	2
303	Microstructural analysis using X-ray computed tomography (CT) in flax/epoxy composites. IOP Conference Series: Materials Science and Engineering, 2016, 139, 012026.	0.6	2
304	Influence of oxidation on steel fiber yarn and knitted fabric properties. Journal of Industrial Textiles, 2016, 45, 1516-1529.	2.4	2
305	Modeling of elastic properties of cell-wall material in nanoclay-reinforced foams. Journal of Cellular Plastics, 2016, 52, 107-130.	2.4	2
306	First steps in composite materials for schoolchildren: A STEM educational project. Composites Part A: Applied Science and Manufacturing, 2018, 109, 298-302.	7.6	2

#	Article	IF	CITATIONS
307	X-ray μCT based assessment of thermal cycling induced cracks in non-crimp 3D orthogonal woven composite materials with porosity. IOP Conference Series: Materials Science and Engineering, 0, 406, 012008.	0.6	2
308	Multi-scale experimental and computational investigation of matrix cracking evolution in carbon fiber-reinforced composites in the absence and presence of voids. IOP Conference Series: Materials Science and Engineering, 2018, 406, 012011.	0.6	2
309	Effects of Stitching on Damage Development for Non-crimp Fabric Composites based on Multi-scale Analytical Method. Journal of Textile Engineering, 2018, 64, 83-91.	0.2	2
310	Analysis of void morphology in composite laminates using micro-computed tomography. IOP Conference Series: Materials Science and Engineering, 2018, 406, 012010.	0.6	2
311	Metal Fibers—Steel. , 2018, , 219-241.		2
312	Digital Image Correlation Measurements of Mode I Fatigue Delamination in Laminated Composites. Proceedings (mdpi), 2018, 2, .	0.2	2
313	2.15 Damage in Architectured Composites. , 2018, , 291-306.		2
314	Reduction of the volume redundancy in combined embedded elements/cohesive zone modelling – Comments on the paper: Liu Q, Gorbatikh L, Lomov SV. A combined use of embedded and cohesive elements to model damage development in fibrous composites, Composite Structures, 2019, 223:110921 (doi 10.1016/j.compstruct.2019.110921). Composite Structures, 2019, 226, 111273.	5.8	2
315	State-of-the-art models for mechanical performance of carbon-glass hybrid composites in wind turbine blades. IOP Conference Series: Materials Science and Engineering, 2020, 942, 012005.	0.6	2
316	Modeling of 2D and 3D woven composites. , 2020, , 23-57.		2
317	Modeling the geometry of textile composite reinforcements: WiseTex. , 2021, , 199-236.		2
318	Detailed comparison of analytical and finite element–based homogenization approaches for fibre-reinforced composites. , 2021, , 141-177.		2
319	Large datasets of single carbon and glass fibre mechanical properties obtained with automated testing equipment. Data in Brief, 2021, 36, 107085.	1.0	2
320	In-series sample methodology for permeability characterization demonstrated on carbon nanotube-grafted alumina textiles. Composites Part A: Applied Science and Manufacturing, 2021, 150, 106631.	7.6	2
321	Permeability Identification of a Stereolithography Specimen Using an Inverse Method. , 2007, , 311-312.		2
322	In-situ synchrotron computed tomography tensile testing observations of the hybrid effect: A comparison with theory. Composites Part B: Engineering, 2022, 235, 109765.	12.0	2
323	Measurements of Yarn Paths in 3D Braids. Advanced Composites Letters, 2007, 16, 096369350701600.	1.3	1

#	Article	IF	CITATIONS
325	Damage Behaviour of Ncf Carbon / Epoxy Laminates Under Tension. Research Journal of Textile and Apparel, 2010, 14, 47-54.	1.1	1
326	Steel fibre knitted fabric for automotive glass forming: Variations of the fabric thickness on the mould and glass optical quality. Journal of Industrial Textiles, 2016, 45, 693-706.	2.4	1
327	Nano-engineered Carbon Fibre-Reinforced Composites: Challenges and Opportunities. , 2017, , 117-135.		1
328	Multi-instrument multi-scale experimental damage mechanics for fibre reinforced composites. IOP Conference Series: Materials Science and Engineering, 0, 406, 012057.	0.6	1
329	Machine compliance in compression tests. AIP Conference Proceedings, 2018, , .	0.4	1
330	Constitutive model and draping simulations of self-reinforced polypropylene composites. AIP Conference Proceedings, 2019, , .	0.4	1
331	Discussion of the statistical representativeness of the results in: Lomov, Breite, Melnikov, Mesquita, Swolfs and Abaimov [Int. J. Solids Struct 225 (2021) 111061]. International Journal of Solids and Structures, 2022, 236-237, 111356.	2.7	1
332	Resistance of cloth barriers made of high-modulus fibres to ballistic impact. Fibre Chemistry, 1996, 27, 172-175.	0.2	0
333	Optimization of the composition and properties of reinforced SVM-cotton fibres. Fibre Chemistry, 1996, 27, 256-258.	0.2	0
334	Finite difference computation of the permeability of textile reinforcements with a fast stokes solver and new validation examples. AIP Conference Proceedings, 2007, , .	0.4	0
335	Predicting the effect of stitching on the mechanical properties and damage of non-crimp fabric composites: finite element analysis. , 2011, , 360-387e.		0
336	Forming of a Non-Crimp 3D Orthogonal Weave E-Glass Composite Reinforcement. Key Engineering Materials, 0, 554-557, 433-440.	0.4	0
337	Strength Analysis of Unidirectional Composites to Explain Fiber Bundle Splitting. Journal of the Japan Society for Composite Materials, 2017, 43, 213-218.	0.2	0
338	An evaluation of damage development for CFRTP by conventional tows and spread tows using acoustic emission. IOP Conference Series: Materials Science and Engineering, 2018, 406, 012056.	0.6	0
339	Analysis and Segmentation of a Three-Dimensional X-ray Computed Tomography Image of a Textile Composite. Lecture Notes in Computer Science, 2014, , 133-142.	1.3	0
340	Towards the Development of a Global Cn-Continuous DIC Procedure?. Conference Proceedings of the Society for Experimental Mechanics, 2016, , 295-301.	0.5	0