Sofie Demeyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6316375/publications.pdf Version: 2024-02-01

SOFIE DEMEVED

#	Article	IF	CITATIONS
1	Worldwide energy needs for ICT: The rise of power-aware networking. , 2008, , .		204
2	Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia. Haematologica, 2015, 100, 1301-1310.	1.7	151
3	JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model. Blood, 2014, 124, 3092-3100.	0.6	128
4	Prediction of human population responses to toxic compounds by a collaborative competition. Nature Biotechnology, 2015, 33, 933-940.	9.4	88
5	PHGDH heterogeneity potentiates cancerÂcell dissemination and metastasis. Nature, 2022, 605, 747-753.	13.7	77
6	HOXA9 Cooperates with Activated JAK/STAT Signaling to Drive Leukemia Development. Cancer Discovery, 2018, 8, 616-631.	7.7	76
7	Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia, 2018, 32, 788-800.	3.3	75
8	Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Science Translational Medicine, 2019, 11, .	5.8	74
9	Single-cell sequencing reveals the origin and the order of mutation acquisition in T-cell acute lymphoblastic leukemia. Leukemia, 2018, 32, 1358-1369.	3.3	66
10	Cooperative Enhancer Activation by TLX1 and STAT5 Drives Development of NUP214-ABL1/TLX1-Positive T Cell Acute Lymphoblastic Leukemia. Cancer Cell, 2018, 34, 271-285.e7.	7.7	48
11	RNA sequencing unravels the genetics of refractory/relapsed T-cell acute lymphoblastic leukemia. Prognostic and therapeutic implications. Haematologica, 2016, 101, 941-950.	1.7	44
12	Single-cell DNA amplicon sequencing reveals clonal heterogeneity and evolution in T-cell acute lymphoblastic leukemia. Blood, 2021, 137, 801-811.	0.6	43
13	Hedgehog pathway activation in T-cell acute lymphoblastic leukemia predicts response to SMO and GLI1 inhibitors. Blood, 2016, 128, 2642-2654.	0.6	39
14	Suz12 inactivation cooperates with JAK3 mutant signaling in the development of T-cell acute lymphoblastic leukemia. Blood, 2019, 134, 1323-1336.	0.6	37
15	The Long Non-coding RNA Flatr Anticipates Foxp3 Expression in Regulatory T Cells. Frontiers in Immunology, 2018, 9, 1989.	2.2	36
16	Optimizing the diagnostic workflow for acute lymphoblastic leukemia by optical genome mapping. American Journal of Hematology, 2022, 97, 548-561.	2.0	36
17	Mutant JAK3 signaling is increased by loss of wild-type JAK3 or by acquisition of secondary JAK3 mutations in T-ALL. Blood, 2018, 131, 421-425.	0.6	30
18	Overexpression of wild-type IL-7Rα promotes T-cell acute lymphoblastic leukemia/lymphoma. Blood, 2021, 138, 1040-1052.	0.6	28

SOFIE DEMEYER

#	Article	IF	CITATIONS
19	Speeding up Martins' algorithm for multiple objective shortest path problems. 4or, 2013, 11, 323-348.	1.0	22
20	Defining the molecular basis of oncogenic cooperation between TAL1 expression and Pten deletion in T-ALL using a novel pro-T-cell model system. Leukemia, 2018, 32, 941-951.	3.3	22
21	Fusion transcripts FYN-TRAF3IP2 and KHDRBS1-LCK hijack T cell receptor signaling in peripheral T-cell lymphoma, not otherwise specified. Nature Communications, 2021, 12, 3705.	5.8	21
22	The Index-Based Subgraph Matching Algorithm with General Symmetries (ISMAGS): Exploiting Symmetry for Faster Subgraph Enumeration. PLoS ONE, 2014, 9, e97896.	1.1	19
23	The XPO1 Inhibitor KPT-8602 Synergizes with Dexamethasone in Acute Lymphoblastic Leukemia. Clinical Cancer Research, 2020, 26, 5747-5758.	3.2	19
24	Deletions of the long arm of chromosome 5 define subgroups of T-cell acute lymphoblastic leukemia. Haematologica, 2016, 101, 951-958.	1.7	18
25	Fault tolerant network design inspired by Physarum polycephalum. Natural Computing, 2013, 12, 277-289.	1.8	17
26	The Index-Based Subgraph Matching Algorithm (ISMA): Fast Subgraph Enumeration in Large Networks Using Optimized Search Trees. PLoS ONE, 2013, 8, e61183.	1.1	17
27	The CCR4-NOT complex is a tumor suppressor in Drosophila melanogaster eye cancer models. Journal of Hematology and Oncology, 2018, 11, 108.	6.9	15
28	Dynamic and stochastic routing for multimodal transportation systems. IET Intelligent Transport Systems, 2014, 8, 112-123.	1.7	14
29	Ant colony optimization for the routing of jobs in optical grid networks. Journal of Optical Networking, 2008, 7, 160.	2.5	9
30	Oncogenic cooperation between TCF7-SPI1 and NRAS(G12D) requires β-catenin activity to drive T-cell acute lymphoblastic leukemia. Nature Communications, 2021, 12, 4164.	5.8	9
31	Monitoring of Leukemia Clones in B-cell Acute Lymphoblastic Leukemia at Diagnosis and During Treatment by Single-cell DNA Amplicon Sequencing. HemaSphere, 2022, 6, e700.	1.2	8
32	TAL1 cooperates with PI3K/AKT pathway activation in T-cell acute lymphoblastic leukemia. Haematologica, 2022, 107, 2304-2317.	1.7	5
33	<i>BCRâ€ABL1</i> positive Bâ€ALL can undergo Tâ€cell lineage shift to become CD19Ânegative Tâ€ALL. HemaSp 2018, 2, e42.	ohere, 1.2	2
34	Evolution of Clinically Relevant Subclones during Chemotherapy Treatment of ALL As Determined By Single-Cell DNA and RNA Sequencing. Blood, 2019, 134, 2749-2749.	0.6	0