Tianxing Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6315807/publications.pdf

Version: 2024-02-01

430874 477307 34 877 18 29 citations h-index g-index papers 34 34 34 764 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A Nonflammable and Thermally Stable Polyethylene/Glass Fiberâ^'Magnesium Hydroxide/Polyethylene Composite Separator with High Mechanical Strength and Electrolyte Retention to Enhance the Performance of Lithiumâ€ion Batteries. Energy Technology, 2022, 10, .	3.8	7
2	Anchoring Copper Single Atoms on Porous Boron Nitride Nanofiber to Boost Selective Reduction of Nitroaromatics. ACS Nano, 2022, 16, 4152-4161.	14.6	47
3	Novel metastable Bi:Co and Bi:Fe alloys nanodots@carbon as anodes for high rate K-ion batteries. Nano Research, 2022, 15, 7220-7226.	10.4	14
4	1,4-Phenylene diisocyanate (PPDI)-containing low H2O/HF and multi-functional electrolyte for LiNiO·6CoO·2MnO·2O2/graphite batteries with enhanced performances. Journal of Power Sources, 2021, 483, 229172.	7.8	18
5	Armoring SiO _x with a conformal LiF layer to boost lithium storage. Journal of Materials Chemistry A, 2021, 9, 7807-7816.	10.3	22
6	3D Ag@C Cloth for Stable Anode Free Sodium Metal Batteries. Small Methods, 2021, 5, e2001050.	8.6	51
7	Mechanisms of sodiation in anatase TiO ₂ in terms of equilibrium thermodynamics and kinetics. Nanoscale Advances, 2021, 3, 4702-4713.	4.6	2
8	3,3â€Diethylene Diâ€Sulfite (DES) as a Highâ€Voltage Electrolyte Additive for 4.5â€V LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ /Graphite Batteries with Enhanced Performances. ChemElectroChem, 2021, 8, 745-754.	3.4	14
9	Nonflammable and thermally stable glass fiber/polyacrylate (GFP) separator for lithium-ion batteries with enhanced safety and lifespan. Journal of Power Sources, 2021, 496, 229862.	7.8	19
10	Aqueous MnV ₂ O ₆ â€Zn Battery with High Operating Voltage and Energy Density. Small, 2021, 17, e2008182.	10.0	24
11	A Ca″on Electrochromic Battery via a Waterâ€inâ€Salt Electrolyte. Advanced Functional Materials, 2021, 31, 2104639.	14.9	53
12	Isocyanoethyl Methacrylate (IMA) as a Bifunctional Electrolyte Additive for LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ /Graphite Batteries with Enhanced Performance. ChemElectroChem, 2021, 8, 3716-3725.	3.4	10
13	Nonflammable functional electrolytes with all-fluorinated solvents matching rechargeable high-voltage Li-metal batteries with Ni-rich ternary cathode. Journal of Power Sources, 2021, 505, 230055.	7.8	37
14	Performance Degradation of Lithiumâ€lon Batteries with LiNi 0.33 Co 0.33 Mn 0.33 O 2 Cathodes during Longâ€Term, Highâ€Temperature Storage: Behaviors and Mechanism. ChemElectroChem, 2021, 8, 403-410.	3.4	2
15	Mathematical Models for the Performance Degradation of Lithium-Ion Batteries with Different Status of Charge (SOC) in Long-Term High Temperature Storage. Journal of the Electrochemical Society, 2021, 168, 120554.	2.9	O
16	Positiveâ€Temperatureâ€Coefficient Graphite Anode as a Thermal Runaway Firewall to Improve the Safety of LiCoO ₂ /Graphite Batteries under Abusive Conditions. Energy Technology, 2020, 8, 1901037.	3.8	11
17	Porous BN Nanofibers Enable Long ycling Life Sodium Metal Batteries. Small, 2020, 16, e2002671.	10.0	11
18	Sulfur-containing C2H2O8S2 molecules as an overall-functional electrolyte additive for high-voltage LiNi0.5Co0.2Mn0.3O2/graphite batteries with enhanced performance. Journal of Power Sources, 2020, 470, 228462.	7.8	34

#	Article	IF	CITATIONS
19	A pore-controllable polyamine (PAI) layer-coated polyolefin (PE) separator for pouch lithium-ion batteries with enhanced safety. Journal of Solid State Electrochemistry, 2020, 24, 843-853.	2.5	13
20	A Four-Layers Hamburger-Structure PVDF-HFP/Al ₂ O ₃ /PE/PVDF-HFP Composite Separator for Pouch Lithium-Ion Batteries with Enhanced Safety and Reliability. Journal of the Electrochemical Society, 2020, 167, 090507.	2.9	10
21	Hexamethylene diisocyanate (HDI)-functionalized electrolyte matching LiNiO·6CoO·2MnO·2O2/graphite batteries with enhanced performances. Electrochimica Acta, 2020, 352, 136456.	5.2	19
22	2-Thiophene sulfonamide (2-TS)-contained multi-functional electrolyte matching high-voltage LiNi0.8Mn0.1Co0.1O2/graphite batteries with enhanced performances. Electrochimica Acta, 2020, 352, 136492.	5.2	18
23	Three-Dimensional Rigidity-Reinforced SiO <i>_x</i> Anodes with Stabilized Performance Using an Aqueous Multicomponent Binder Technology. ACS Applied Materials & Diterfaces, 2019, 11, 26038-26046.	8.0	34
24	1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4) as an ionic liquid-type electrolyte additive to enhance the low-temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite batteries. Electrochimica Acta, 2019, 317, 146-154.	5.2	46
25	Lithium difluorophosphate as a multi-functional electrolyte additive for 4.4 V LiNi0.5Co0.2Mn0.3O2/graphite lithium ion batteries. Journal of Electroanalytical Chemistry, 2019, 846, 113141.	3.8	54
26	(Phenylsulfonyl)acetonitrile as a High-Voltage Electrolyte Additive to Form a Sulfide Solid Electrolyte Interface Film to Improve the Performance of Lithium-Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 12161-12168.	3.1	27
27	Lithium bisoxalatodifluorophosphate (LiBODFP) as a multifunctional electrolyte additive for 5ÂV LiNi _{0.5} Mn _{1.5} O ₄ -based lithium-ion batteries with enhanced electrochemical performance. Journal of Materials Chemistry A, 2019, 7, 8292-8301.	10.3	82
28	Analysis on the constant-current overcharge electrode process and self-protection mechanism of LiCoO2/graphite batteries. Journal of Solid State Electrochemistry, 2019, 23, 407-417.	2.5	5
29	Preparation of Flexible Selfâ€Supporting 3D SiO x â€Based Membrane Anodes with Stabilized Electrochemical Performances for Lithiumâ€lon Batteries. Energy Technology, 2019, 7, 1800635.	3.8	8
30	2,3,4,5,6-Pentafluorophenyl Methanesulfonate as a Versatile Electrolyte Additive Matches LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ /Graphite Batteries Working in a Wide-Temperature Range. ACS Applied Materials & Samp; Interfaces, 2018, 10, 31735-31744.	8.0	71
31	Self-supported PVdF/P(VC-VAc) blended polymer electrolytes for LiNi0.5Mn1.5O4/Li batteries. Journal of Membrane Science, 2017, 532, 30-37.	8.2	44
32	Al2O3/PVdF-HFP-CMC/PE separator prepared using aqueous slurry and post-hot-pressing method for polymer lithium-ion batteries with enhanced safety. Electrochimica Acta, 2016, 212, 416-425.	5.2	70
33	Waterâ€soluble polyacrylate copolymers as green binders of graphite anodes for highâ€energy density lithiumâ€ion pouch cells with enhanced electrochemical and safety performance. ChemElectroChem, 0, ,	3.4	0
34	Achieving the Interface Stability of LiMn ₂ O ₄ Cathode Using Aqueous Polyacrylic Acid/acrylate Copolymer and Nanoscale CaCO ₃ to Improve the Highâ€Temperature Cycling and Storage Performance of Lithiumâ€Ion Batteries. Energy Technology, 0, , 2200163.	3.8	O