Brent J Sinclair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6315627/publications.pdf Version: 2024-02-01

RDENT | SINCLAID

#	Article	IF	CITATIONS
1	Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecology Letters, 2016, 19, 1372-1385.	3.0	587
2	Insects in Fluctuating Thermal Environments. Annual Review of Entomology, 2015, 60, 123-140.	5.7	577
3	Cold truths: how winter drives responses of terrestrial organisms to climate change. Biological Reviews, 2015, 90, 214-235.	4.7	490
4	Insects at low temperatures: an ecological perspective. Trends in Ecology and Evolution, 2003, 18, 257-262.	4.2	370
5	An invitation to measure insect cold tolerance: Methods, approaches, and workflow. Journal of Thermal Biology, 2015, 53, 180-197.	1.1	275
6	Mechanisms underlying insect chill-coma. Journal of Insect Physiology, 2011, 57, 12-20.	0.9	270
7	Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures. , 2012, 2, 2151-2202.		247
8	Cross-tolerance and Cross-talk in the Cold: Relating Low Temperatures to Desiccation and Immune Stress in Insects. Integrative and Comparative Biology, 2013, 53, 545-556.	0.9	222
9	Gene transcription during exposure to, and recovery from, cold and desiccation stress in Drosophila melanogaster. Insect Molecular Biology, 2007, 16, 435-443.	1.0	200
10	Repeated stress exposure results in a survival–reproduction trade-off in <i>Drosophila melanogaster</i> . Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 963-969.	1.2	196
11	Climatic variability and the evolution of insect freeze tolerance. Biological Reviews, 2003, 78, 181-195.	4.7	183
12	Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome. Scientific Reports, 2016, 6, 28999.	1.6	176
13	Linking energetics and overwintering in temperate insects. Journal of Thermal Biology, 2015, 54, 5-11.	1.1	159
14	Upper thermal tolerance and oxygen limitation in terrestrial arthropods. Journal of Experimental Biology, 2004, 207, 2361-2370.	0.8	155
15	Mechanisms underlying insect freeze tolerance. Biological Reviews, 2018, 93, 1891-1914.	4.7	152
16	Variation in Thermal Performance among Insect Populations. Physiological and Biochemical Zoology, 2012, 85, 594-606.	0.6	148
17	Thermal Variability Increases the Impact of Autumnal Warming and Drives Metabolic Depression in an Overwintering Butterfly. PLoS ONE, 2012, 7, e34470.	1.1	148
18	Reestablishment of ion homeostasis during chill-coma recovery in the cricket <i>Gryllus pennsylvanicus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20750-20755.	3.3	147

#	Article	IF	CITATIONS
19	The role of the gut in insect chilling injury: cold-induced disruption of osmoregulation in the fall field cricket, <i>Gryllus pennsylvanicus</i> . Journal of Experimental Biology, 2011, 214, 726-734.	0.8	146
20	Hemispheric Asymmetries in Biodiversity—A Serious Matter for Ecology. PLoS Biology, 2004, 2, e406.	2.6	129
21	Translocation experiments with butterflies reveal limits to enhancement of poleward populations under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11160-11165.	3.3	121
22	Acclimation, shock and hardening in the cold. Journal of Thermal Biology, 2005, 30, 557-562.	1.1	120
23	Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera:) Tj ETQq1 1 0.784314	ŧ rgBŢ /Ον	erlock 10 Tf 5
24	The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster. Journal of Insect Physiology, 2006, 52, 1027-1033.	0.9	109
25	Adult plasticity of cold tolerance in a continental-temperate population of Drosophila suzukii. Journal of Insect Physiology, 2015, 79, 1-9.	0.9	108
26	Seasonal shifts in the insect gut microbiome are concurrent with changes in cold tolerance and immunity. Functional Ecology, 2018, 32, 2357-2368.	1.7	105
27	The overwintering physiology of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera:) Tj ETQq1 1 0.	784314 rg	gBT_10verlock
28	The many roles of fats in overwintering insects. Journal of Experimental Biology, 2018, 221, .	0.8	102
29	Divergent transcriptomic responses to repeated and single cold exposures in <i>Drosophila melanogaster</i> . Journal of Experimental Biology, 2011, 214, 4021-4029.	0.8	101
30	The impacts of repeated cold exposure on insects. Journal of Experimental Biology, 2012, 215, 1607-1613.	0.8	101
31	Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii. Journal of Insect Physiology, 2016, 89, 37-51.	0.9	99
32	Field ecology of freeze tolerance: interannual variation in cooling rates, freeze-thaw and thermal stress in the microhabitat of the alpine cockroach Celatoblatta quinquemaculata. Oikos, 2001, 93, 286-293.	1.2	90
33	The relative importance of number, duration and intensity of cold stress events in determining survival and energetics of an overwintering insect. Functional Ecology, 2015, 29, 357-366.	1.7	85
34	The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodica chalcoptera (Coleoptera: Chrysomelidae). Journal of Insect Physiology, 2005, 51, 1013-1023.	0.9	82
35	Diurnal variation in supercooling points of three species of Collembola from Cape Hallett, Antarctica. Journal of Insect Physiology, 2003, 49, 1049-1061.	0.9	81
36	Microclimate impacts of passive warming methods in Antarctica: implications for climate change studies. Polar Biology, 2011, 34, 1421-1435.	0.5	79

#	Article	IF	CITATIONS
37	Real-time measurement of metabolic rate during freezing and thawing of the wood frog, <i>Rana sylvatica</i> : implications for overwinter energy use. Journal of Experimental Biology, 2013, 216, 292-302.	0.8	75
38	Can we predict the effects of multiple stressors on insects in a changing climate?. Current Opinion in Insect Science, 2016, 17, 55-61.	2.2	74
39	Environmental physiology of three species of Collembola at Cape Hallett, North Victoria Land, Antarctica. Journal of Insect Physiology, 2006, 52, 29-50.	0.9	73
40	Rapid changes in desiccation resistance in Drosophila melanogaster are facilitated by changes in cuticular permeability. Journal of Insect Physiology, 2010, 56, 2006-2012.	0.9	73
41	Deleterious effects of repeated cold exposure in a freeze-tolerant sub-Antarctic caterpillar. Journal of Experimental Biology, 2005, 208, 869-879.	0.8	72
42	The sub-lethal effects of repeated freezing in the woolly bear caterpillar <i>Pyrrharctia isabella</i> . Journal of Experimental Biology, 2011, 214, 1205-1212.	0.8	71
43	Parallel ionoregulatory adjustments underlie phenotypic plasticity and evolution of <i>Drosophila</i> cold tolerance. Journal of Experimental Biology, 2015, 218, 423-32.	0.8	68
44	Eco-immunology in the cold: the role of immunity in shaping the overwintering survival of ectotherms. Journal of Experimental Biology, 2018, 221, .	0.8	67
45	Triacylglyceride measurement in small quantities of homogenised insect tissue: Comparisons and caveats. Journal of Insect Physiology, 2011, 57, 1602-1613.	0.9	65
46	Constraint and Competition in Assemblages: A Cross ontinental and Modeling Approach for Ants. American Naturalist, 2005, 165, 481-494.	1.0	63
47	Rapid responses to high temperature and desiccation but not to low temperature in the freeze tolerant sub-Antarctic caterpillar Pringleophaga marioni (Lepidoptera, Tineidae). Journal of Insect Physiology, 2003, 49, 45-52.	0.9	61
48	The Evolution of Cold Tolerance in <i>Drosophila</i> Larvae. Physiological and Biochemical Zoology, 2011, 84, 43-53.	0.6	60
49	The Relationship between Chill-Coma Onset and Recovery at the Extremes of the Thermal Window of <i>Drosophila melanogaster</i> . Physiological and Biochemical Zoology, 2011, 84, 553-559.	0.6	60
50	Phenotypic plasticity of thermal tolerances in five oribatid mite species from sub-Antarctic Marion Island. Journal of Insect Physiology, 2006, 52, 693-700.	0.9	58
51	Lepidopteran species differ in susceptibility to winter warming. Climate Research, 2012, 53, 119-130.	0.4	57
52	Metabolism of the sub-Antarctic caterpillar Pringleophaga marioni during cooling, freezing and thawing. Journal of Experimental Biology, 2004, 207, 1287-1294.	0.8	56
53	Rapid desiccation hardening changes the cuticular hydrocarbon profile of Drosophila melanogaster. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 180, 38-42.	0.8	54
54	Could phenotypic plasticity limit an invasive species? Incomplete reversibility of mid-winter deacclimation in emerald ash borer. Biological Invasions, 2012, 14, 115-125.	1.2	53

#	Article	IF	CITATIONS
55	Effects of cold-acclimation on gene expression in Fall field cricket (Gryllus pennsylvanicus) ionoregulatory tissues. BMC Genomics, 2017, 18, 357.	1.2	52
56	The effects of selection for cold tolerance on crossâ€ŧolerance to other environmental stressors in <i>Drosophila melanogaster</i> . Insect Science, 2009, 16, 263-276.	1.5	51
57	Short-term hardening effects on survival of acute and chronic cold exposure by Drosophila melanogaster larvae. Journal of Insect Physiology, 2008, 54, 708-718.	0.9	50
58	Membrane remodeling and glucose in Drosophila melanogaster: A test of rapid cold-hardening and chilling tolerance hypotheses. Journal of Insect Physiology, 2009, 55, 243-249.	0.9	50
59	Threshold temperatures mediate the impact of reduced snow cover on overwintering freeze-tolerant caterpillars. Die Naturwissenschaften, 2012, 99, 33-41.	0.6	49
60	Cold tolerance of the Antarctic springtail Gomphiocephalus hodgsoni (Collembola,) Tj ETQq0 0 0 rgBT /Overlocl	k 10 Tf 50	542 Jd (Hypo
61	Parallel molecular routes to cold adaptation in eight genera of New Zealand stick insects. Scientific Reports, 2015, 5, 13965.	1.6	45
62	Metabolic rate does not decrease with starvation in <i>Gryllus bimaculatus</i> when changing fuel use is taken into account. Physiological Entomology, 2011, 36, 84-89.	0.6	44
63	Chill-tolerant Gryllus crickets maintain ion balance at low temperatures. Journal of Insect Physiology, 2015, 77, 15-25.	0.9	44
64	lce nucleation and freezing tolerance in New Zealand alpine and lowland weta,Hemideinaspp. (Orthoptera; Stenopelmatidae). Physiological Entomology, 1999, 24, 56-63.	0.6	42
65	Terrestrial microarthropods of Victoria Land and Queen Maud Mountains, Antarctica: Implications of climate change. Soil Biology and Biochemistry, 2006, 38, 3158-3170.	4.2	42
66	Metabolism and energy supply below the critical thermal minimum of a chill-susceptible insect. Journal of Experimental Biology, 2012, 215, 1366-1372.	0.8	42
67	A crossâ€seasonal perspective on local adaptation: metabolic plasticity mediates responses to winter in a thermalâ€generalist moth. Functional Ecology, 2015, 29, 549-561.	1.7	41
68	Cold tolerance of the montane Sierra leaf beetle, Chrysomela aeneicollis. Journal of Insect Physiology, 2015, 81, 157-166.	0.9	41
69	Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190050.	1.2	41
70	Intracellular ice formation in insects: Unresolved after 50years?. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2010, 155, 14-18.	0.8	40
71	On the distribution of terrestrial invertebrates at Cape Bird, Ross Island, Antarctica. Polar Biology, 2001, 24, 394-400.	0.5	39
72	Seasonal variation in freezing tolerance of the New Zealand alpine cockroach Celatoblatta quinquemaculata. Ecological Entomology, 1997, 22, 462-467.	1.1	38

#	Article	IF	CITATIONS
73	Terrestrial invertebrate abundance across a habitat transect in Keble Valley, Ross Island, Antarctica. Pedobiologia, 2001, 45, 134-145.	0.5	38
74	Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects. Biology Letters, 2010, 6, 274-277.	1.0	38
75	Temperatures experienced by wood-boring beetles in the under-bark microclimate. Forest Ecology and Management, 2012, 269, 149-157.	1.4	38
76	Paradoxical acclimation responses in the thermal performance of insect immunity. Oecologia, 2016, 181, 77-85.	0.9	38
77	DNA barcoding and the documentation of alien species establishment on sub-Antarctic Marion Island. Polar Biology, 2008, 31, 651-655.	0.5	37
78	Divergent transcriptional responses to low temperature among populations of alpine and lowland species of <scp>N</scp> ew <scp>Z</scp> ealand stick insects (<i><scp>M</scp>icrarchus</i>). Molecular Ecology, 2014, 23, 2712-2726.	2.0	37
79	Does cold activate the Drosophila melanogaster immune system?. Journal of Insect Physiology, 2017, 96, 29-34.	0.9	37
80	Rapid cold-hardening in a Karoo beetle, Afrinus sp Physiological Entomology, 2006, 31, 98-101.	0.6	35
81	Nine Maxims for the Ecology of Cold-Climate Winters. BioScience, 2021, 71, 820-830.	2.2	34
82	Determinants of terrestrial arthropod community composition at Cape Hallett, Antarctica. Antarctic Science, 2006, 18, 303-312.	0.5	32
83	Identification of cold-responsive genes in a New Zealand alpine stick insect using RNA-Seq. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2013, 8, 24-31.	0.4	32
84	Caterpillars benefit from thermal ecosystem engineering by wandering albatrosses on sub-Antarctic Marion Island. Biology Letters, 2006, 2, 51-54.	1.0	31
85	Effects of cold acclimation on rectal macromorphology, ultrastructure, and cytoskeletal stability in Gryllus pennsylvanicus crickets. Journal of Insect Physiology, 2018, 104, 15-24.	0.9	31
86	Ion and water balance in Gryllus crickets during the first twelve hours of cold exposure. Journal of Insect Physiology, 2016, 89, 19-27.	0.9	30
87	Hardening trumps acclimation in improving cold tolerance of <i>Drosophila melanogaster</i> larvae. Physiological Entomology, 2009, 34, 217-223.	0.6	29
88	High temperature tolerance and thermal plasticity in emerald ash borer Agrilus planipennis. Agricultural and Forest Entomology, 2011, 13, 333-340.	0.7	29
89	Changes in extreme cold tolerance, membrane composition and cardiac transcriptome during the first day of thermal acclimation in the porcelain crab <i>Petrolisthes cinctipes</i> . Journal of Experimental Biology, 2012, 215, 1824-1836.	0.8	28
90	Seasonal accumulation of acetylated triacylglycerols by a freeze-tolerant insect. Journal of Experimental Biology, 2014, 217, 1580-1587.	0.8	28

#	Article	IF	CITATIONS
91	Insect Immunity Varies Idiosyncratically During Overwintering. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2017, 327, 222-234.	0.9	28
92	Ontogenetic variation in cold tolerance plasticity in Drosophila: is the Bogert effect bogus?. Die Naturwissenschaften, 2013, 100, 281-284.	0.6	27
93	Effects of increased temperatures simulating climate change on terrestrial invertebrates on Ross Island, Antarctica. Pedobiologia, 2002, 46, 150-160.	0.5	26
94	The effect of selection for desiccation resistance on cold tolerance of Drosophila melanogaster. Physiological Entomology, 2007, 32, 322-327.	0.6	26
95	Synchrotron X-Ray Visualisation of Ice Formation in Insects during Lethal and Non-Lethal Freezing. PLoS ONE, 2009, 4, e8259.	1.1	26
96	A comparison of <i>Frost</i> expression among species and life stages of <i>Drosophila</i> . Insect Molecular Biology, 2012, 21, 31-39.	1.0	26
97	Cold tolerance of a New Zealand alpine cockroach, Celatoblatta quinquemaculata (Dictyoptera,) Tj ETQq1 1 0.784	4314 rgBT 0.6	/Overlock
98	Positive selection in glycolysis among Australasian stick insects. BMC Evolutionary Biology, 2013, 13, 215.	3.2	25
99	Water loss in tree weta (<i>Hemideina</i>): adaptation to the montane environment and a test of the melanisation–desiccation resistance hypothesis. Journal of Experimental Biology, 2015, 218, 1995-2004.	0.8	24
100	Avoidance of intracellular freezing by the freezing-tolerant New Zealand Alpine weta Hemideina maori (Orthoptera: Stenopelmatidae). Journal of Insect Physiology, 1997, 43, 621-625.	0.9	22
101	Cold tolerance of Littorinidae from southern Africa: intertidal snails are not constrained to freeze tolerance. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2004, 174, 617-624.	0.7	22
102	Microhabitat selection and seasonality of alpine invertebrates. Pedobiologia, 2001, 45, 107-120.	0.5	20
103	The effects of CO2 and chronic cold exposure on fecundity of female Drosophila melanogaster. Journal of Insect Physiology, 2011, 57, 35-37.	0.9	20
104	Cold tolerance of third-instar Drosophila suzukii larvae. Journal of Insect Physiology, 2017, 96, 45-52.	0.9	20
105	Thermal biology of the alien ground beetle Merizodus soledadinus introduced to the Kerguelen Islands. Polar Biology, 2012, 35, 509-517.	0.5	19
106	Cold Tolerance of the Eastern Subterranean Termite, <i>Reticulitermes flavipes</i> (Isoptera:) Tj ETQq0 0 0 rgBT /C)verlock 1(0.7	0 ∏f 50 142
107	The effect of cold acclimation on active ion transport in cricket ionoregulatory tissues. Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2018, 216, 28-33.	0.8	19

¹⁰⁸Water relations of the freeze-tolerant New Zealand alpine cockroach Celatoblatta quinquemaculata
(Dictyoptera: Blattidae). Journal of Insect Physiology, 2000, 46, 869-876.0.918

#	Article	IF	CITATIONS
109	Haemolymph osmolality and thermal hysteresis activity in 17 species of arthropods from sub-Antarctic Marion Island. Polar Biology, 2002, 25, 928-933.	0.5	18
110	Changes in soil nematode populations indicate an annual life cycle at Cape Hallett, Antarctica. Pedobiologia, 2009, 52, 375-386.	0.5	18
111	Repeated freezing induces a trade-off between cryoprotection and egg production in the goldenrod gall fly, <i>Eurosta solidaginis</i> . Journal of Experimental Biology, 2018, 221, .	0.8	18
112	How crickets become freeze tolerant: The transcriptomic underpinnings of acclimation in Gryllus veletis. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2019, 29, 55-66.	0.4	18
113	Laboratory acclimation to autumn-like conditions induces freeze tolerance in the spring field cricket Gryllus veletis (Orthoptera: Gryllidae). Journal of Insect Physiology, 2019, 113, 9-16.	0.9	17
114	Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change. Ecological Modelling, 2019, 394, 53-65.	1.2	17
115	Help, there are â€~omics' in my comparative physiology!. Journal of Experimental Biology, 2020, 223, .	0.8	17
116	Temperature and moisture trends in nonâ€sorted earth hummocks and stripes on the Old Man Range, New Zealand: implications for mechanisms of maintenance. Permafrost and Periglacial Processes, 2008, 19, 305-314.	1.5	16
117	Transmembrane ion distribution during recovery from freezing in the woolly bear caterpillar Pyrrharctia isabella (Lepidoptera: Arctiidae). Journal of Insect Physiology, 2011, 57, 1154-1162.	0.9	16
118	Similar metabolic rate-temperature relationships after acclimation at constant and fluctuating temperatures in caterpillars of a sub-Antarctic moth. Journal of Insect Physiology, 2016, 85, 10-16.	0.9	16
119	Probability of emerald ash borer impact for Canadian cities and North America: a mechanistic model. Biological Invasions, 2018, 20, 2661-2677.	1.2	15
120	Persistence of diet effects on the microbiota of <i>Drosophila suzukii</i> (Diptera: Drosophilidae). Canadian Entomologist, 2020, 152, 516-531.	0.4	15
121	On the cold hardiness of Stereotydeus mollis (Acari: Prostigmata) from Ross Island, Antarctica. Pedobiologia, 2002, 46, 188-195.	0.5	14
122	Increased abundance of <i>Frost</i> mRNA during recovery from cold stress is not essential for cold tolerance in adult <i><scp>D</scp>rosophila melanogaster</i> . Insect Molecular Biology, 2013, 22, 541-550.	1.0	14
123	Substantial heat-tolerance acclimation capacity in tropical thermophilic snails, but to what benefit?. Journal of Experimental Biology, 2018, 221, .	0.8	14
124	Elevational variation in adult body size and growth rate but not in metabolic rate in the tree weta Hemideina crassidens. Journal of Insect Physiology, 2015, 75, 30-38.	0.9	13
125	Physiological variation and phenotypic plasticity: a response to`Plasticity in arthropod cryotypes' by Hawes and Bale. Journal of Experimental Biology, 2008, 211, 3353-3357.	0.8	12
126	Cold hardiness and deacclimation of overwintering Papilio zelicaon pupae. Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2014, 178, 51-58.	0.8	12

#	Article	IF	CITATIONS
127	Cold tolerance, water balance, energetics, gas exchange, and diapause in overwintering brown marmorated stink bugs. Journal of Insect Physiology, 2021, 128, 104171.	0.9	12
128	The macrophysiology of insect cold-hardiness. , 0, , 191-222.		11
129	The overwintering biology of the acorn weevil, Curculio glandium in southwestern Ontario. Journal of Thermal Biology, 2014, 44, 103-109.	1.1	11
130	Freeze tolerance of <i>Cyphoderris monstrosa</i> (Orthoptera: Prophalangopsidae). Canadian Entomologist, 2016, 148, 668-672.	0.4	11
131	Thermal limits of summer-collected Pardosa wolf spiders (Araneae: Lycosidae) from the Yukon Territory (Canada) and Greenland. Polar Biology, 2019, 42, 2055-2064.	0.5	11
132	Static and dynamic approaches yield similar estimates of the thermal sensitivity of insect metabolism. Journal of Insect Physiology, 2013, 59, 761-766.	0.9	10
133	Life history and osmoregulatory ability of Telmatogeton amphibius (Diptera, Chironomidae) at Marion Island. Polar Biology, 2004, 27, 629.	0.5	9
134	Slow or stepped rewarming after acute low-temperature exposure does not improve survival of <i>Drosophila melanogaster</i> larvae. Canadian Entomologist, 2008, 140, 306-311.	0.4	9
135	CRISPR-induced null alleles show that <i>Frost</i> protects <i>Drosophila melanogaster</i> reproduction after cold exposure. Journal of Experimental Biology, 2017, 220, 3344-3354.	0.8	9
136	Thermal Variability and Plasticity Drive the Outcome of a Host-Pathogen Interaction. American Naturalist, 2020, 195, 603-615.	1.0	9
137	Reversing sodium differentials between the hemolymph and hindgut speeds chill coma recovery but reduces survival in the fall field cricket, Gryllus pennsylvanicus. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2020, 244, 110699.	0.8	9
138	Plasticity drives extreme cold tolerance of emerald ash borer (Agrilus planipennis) during a polar vortex. Current Research in Insect Science, 2022, 2, 100031.	0.8	9
139	Thermal biology and immersion tolerance of the Beringian pseudoscorpion Wyochernes asiaticus. Polar Biology, 2016, 39, 1351-1355.	0.5	7
140	Thermal preference and performance in a sub-Antarctic caterpillar: A test of the coadaptation hypothesis and its alternatives. Journal of Insect Physiology, 2017, 98, 108-116.	0.9	7
141	Comparing apples and oranges (and blueberries and grapes): fruit type affects development and cold susceptibility of immature <i>Drosophila suzukii</i> (Diptera: Drosophilidae). Canadian Entomologist, 2020, 152, 532-545.	0.4	7
142	A comparison of low temperature biology of Pieris rapae from Ontario, Canada, and Yakutia, Far Eastern Russia. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2020, 242, 110649.	0.8	7
143	Predators minimize energy costs, rather than maximize energy gains under warming: Evidence from a microcosm feeding experiment. Functional Ecology, 2022, 36, 2279-2288.	1.7	7
144	Overwintering biology of the carob moth <i>Apomyelois ceratoniae</i> (Lepidoptera: Pyralidae). International Journal of Pest Management, 2016, 62, 69-74.	0.9	6

#	Article	IF	CITATIONS
145	Overwintering Red Velvet Mites Are Freeze Tolerant. Physiological and Biochemical Zoology, 2019, 92, 201-205.	0.6	6
146	Chemosensory and thermal cue responses in the sub-Antarctic moth Pringleophaga marioni: Do caterpillars choose Wandering Albatross nest proxies?. Polar Biology, 2014, 37, 555-563.	0.5	5
147	Further support for thermal ecosystem engineering by wandering albatross. Antarctic Science, 2016, 28, 35-43.	0.5	5
148	Diapause differentially modulates the transcriptomes of fat body and flight muscle in the Colorado potato beetle. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2021, 40, 100906.	0.4	5
149	Winter warming effects on overwinter survival, energy use, and spring emergence of <i>Cerotoma trifurcata</i> (Coleoptera: Chrysomelidae). Agricultural and Forest Entomology, 2017, 19, 163-170.	0.7	5
150	Loss of ion homeostasis is not the cause of chill coma or impaired dispersal in false codling moth Thaumatotibia leucotreta (Lepidoptera: Tortricidae). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2019, 229, 40-44.	0.8	4
151	Dormancy in laboratory-reared Asian longhorned beetles, Anoplophora glabripennis. Journal of Insect Physiology, 2021, 130, 104179.	0.9	4
152	Thermal acclimation has limited effect on the thermal tolerances of summer-collected Arctic and sub-Arctic wolf spiders. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2021, 257, 110974.	0.8	4
153	Dissection of <i>Anoplophora glabripennis</i> (Coleoptera: Cerambycidae) larval tissues for physiological and molecular studies. Canadian Entomologist, 2020, 152, 399-409.	0.4	3
154	Cold tolerance of laboratory-reared Asian longhorned beetles. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2021, 257, 110957.	0.8	3
155	Stimulating a Canadian narrative for climate. Facets, 2017, 2, 131-149.	1.1	3
156	Worrying about weird winters. Temperature, 2014, 1, 18-19.	1.7	2
157	De novo assembly and characterisation of the transcriptome of the Beringian pseudoscorpion. Canadian Entomologist, 2021, 153, 301-313.	0.4	2
158	Harnessing thermal plasticity to enhance the performance of mass-reared insects: opportunities and challenges. Bulletin of Entomological Research, 2022, , 1-10.	0.5	2
159	Metabolic cost of freeze-thaw and source of CO2 production in the freeze-tolerant cricket <i>Gryllus veletis</i> . Journal of Experimental Biology, 2021, 224, .	0.8	1
160	The mitochondrial genomes of two <i>Gryllus</i> crickets (Grylloidea: Gryllidae) via RNA-seq. Mitochondrial DNA Part B: Resources, 2022, 7, 106-107.	0.2	1
161	Editorial overview: Environmental physiology: Insect environmental physiology. Current Opinion in Insect Science, 2014, 4, ix-x.	2.2	0
162	Editorial overview: Global change biology: Linking pattern and process to prediction and policy. Current Opinion in Insect Science, 2016, 17, iv-v.	2.2	0

#	Article	IF	CITATIONS
163	Big Questions about OrganismsIntegrative Organismal Biology. Edited by L. B. Martin, C. K. Ghalambor, and H. A. Woods. Hoboken, NJ: Wiley, 2015 Physiological and Biochemical Zoology, 2016, 89, 453-455.	0.6	0
164	Gut yeasts do not improve desiccation survival in Drosophila melanogaster. Journal of Insect Physiology, 2019, 117, 103893.	0.9	0