Behrouz Karami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6315145/publications.pdf

Version: 2024-02-01

		126858	189801
56	2,921	33	50
papers	citations	h-index	g-index
67	67	67	022
07	0/	0/	923
all docs	docs citations	times ranked	citing authors
67 all docs	67 docs citations	67 times ranked	923 citing authors

#	Article	IF	CITATIONS
1	A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation. Aerospace Science and Technology, 2018, 72, 134-149.	2.5	208
2	Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin-Walled Structures, 2018, 129, 251-264.	2.7	157
3	Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels. Archives of Civil and Mechanical Engineering, 2021, 21, 1.	1.9	117
4	Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets. International Journal of Mechanical Sciences, 2019, 156, 94-105.	3.6	107
5	On nonlinear bending behavior of FG porous curved nanotubes. International Journal of Engineering Science, 2019, 135, 58-74.	2.7	104
6	Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions. Engineering With Computers, 2019, 35, 1297-1316.	3.5	103
7	Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory. Composites Part B: Engineering, 2020, 182, 107622.	5.9	94
8	On guided wave propagation in fully clamped porous functionally graded nanoplates. Acta Astronautica, 2018, 143, 380-390.	1.7	89
9	Time-dependent behavior of porous curved nanobeam. International Journal of Engineering Science, 2021, 160, 103455.	2.7	76
10	Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 97, 317-327.	1.3	74
11	Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory. Mechanics of Advanced Materials and Structures, 2018, 25, 1047-1057.	1.5	67
12	On the dynamic of graphene reinforced nanocomposite cylindrical shells subjected to a moving harmonic load. International Journal of Engineering Science, 2020, 154, 103339.	2.7	67
13	Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation. European Journal of Mechanics, A/Solids, 2022, 95, 104649.	2.1	67
14	Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories. European Journal of Mechanics, A/Solids, 2018, 67, 200-214.	2.1	66
15	Influence of homogenization schemes on vibration of functionally graded curved microbeams. Composite Structures, 2019, 216, 67-79.	3.1	66
16	On the forced resonant vibration analysis of functionally graded polymer composite doubly-curved nanoshells reinforced with graphene-nanoplatelets. Computer Methods in Applied Mechanics and Engineering, 2020, 359, 112767.	3.4	66
17	On the shear buckling of porous nanoplates using a new size-dependent quasi-3D shear deformation theory. Acta Mechanica, 2018, 229, 4549-4573.	1.1	61
18	On the dynamics of porous nanotubes with variable material properties and variable thickness. International Journal of Engineering Science, 2019, 136, 53-66.	2.7	61

#	Article	IF	CITATIONS
19	Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets. Thin-Walled Structures, 2021, 160, 107407.	2.7	60
20	Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment. Materials Research Express, 2017, 4, 085013.	0.8	56
21	On the resonance of functionally graded nanoplates using bi-Helmholtz nonlocal strain gradient theory. International Journal of Engineering Science, 2019, 144, 103143.	2.7	56
22	On the dynamics of porous doubly-curved nanoshells. International Journal of Engineering Science, 2019, 143, 39-55.	2.7	56
23	A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates. Aerospace Science and Technology, 2018, 82-83, 499-512.	2.5	55
24	On the forced mechanics of doubly-curved nanoshell. International Journal of Engineering Science, 2021, 168, 103538.	2.7	55
25	Static analysis of functionally graded anisotropic nanoplates using nonlocal strain gradient theory. Composite Structures, 2019, 227, 111249.	3.1	52
26	Wave dispersion of mounted graphene with initial stress. Thin-Walled Structures, 2018, 122, 102-111.	2.7	51
27	Temperature-dependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field. Journal of Thermal Stresses, 2018, 41, 483-499.	1.1	45
28	On pre-stressed functionally graded anisotropic nanoshell in magnetic field. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	0.8	45
29	Static bending analysis of functionally graded polymer composite curved beams reinforced with carbon nanotubes. Thin-Walled Structures, 2020, 157, 107139.	2.7	44
30	On the mechanics of functionally graded nanoshells. International Journal of Engineering Science, 2020, 153, 103309.	2.7	43
31	Nonlocal Buckling Analysis of Composite Curved Beams Reinforced with Functionally Graded Carbon Nanotubes. Molecules, 2019, 24, 2750.	1.7	41
32	Damped vibration of a graphene sheet using a higher-order nonlocal strain-gradient Kirchhoff plate model. Comptes Rendus - Mecanique, 2018, 346, 1216-1232.	2.1	40
33	A new size-dependent shear deformation theory for free vibration analysis of functionally graded/anisotropic nanobeams. Thin-Walled Structures, 2019, 143, 106227.	2.7	40
34	Wave Propagation of Porous Nanoshells. Nanomaterials, 2019, 9, 22.	1.9	40
35	On the dynamics of nanoshells. International Journal of Engineering Science, 2021, 158, 103431.	2.7	37
36	Effect of magnetic field on the wave propagation in nanoplates based on strain gradient theory with one parameter and two-variable refined plate theory. Modern Physics Letters B, 2016, 30, 1650421.	1.0	33

#	Article	IF	CITATIONS
37	Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 287-301.	1.1	31
38	Dynamic response of porous E-FGM thick microplate resting on elastic foundation subjected to moving load with acceleration. Thin-Walled Structures, 2022, 173, 108981.	2.7	30
39	Wave dispersion characteristics of graphene reinforced nanocomposite curved viscoelastic panels. Composite Structures, 2021, 277, 114648.	3.1	29
40	On the stress analysis of anisotropic curved panels. International Journal of Engineering Science, 2022, 172, 103625.	2.7	28
41	Wave dispersion of nanobeams incorporating stretching effect. Waves in Random and Complex Media, 0, , 1-21.	1.6	26
42	Novel study on functionally graded anisotropic doubly curved nanoshells. European Physical Journal Plus, 2020, 135, 1.	1.2	23
43	On thermal snap-buckling of FG curved nanobeams. Materials Research Express, 2019, 6, 115008.	0.8	22
44	Elastic wave characteristics in damped laminated composite nano-scaled shells with different panel shapes. Composite Structures, 2021, 267, 113924.	3.1	22
45	Hygrothermal wave characteristic of nanobeam-type inhomogeneous materials with porosity under magnetic field. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 2149-2169.	1.1	21
46	Elastic guided waves in fully-clamped functionally graded carbon nanotube-reinforced composite plates. Materials Research Express, 2019, 6, 0950a9.	0.8	20
47	Buckling Analysis of CNTRC Curved Sandwich Nanobeams in Thermal Environment. Applied Sciences (Switzerland), 2021, 11, 3250.	1.3	19
48	Forced Vibration Analysis of Functionally Graded Anisotropic Nanoplates Resting on Winkler/Pasternak-Foundation. Computers, Materials and Continua, 2020, 62, 607-629.	1.5	19
49	Forced vibration analysis of anisotropic curved panels via a quasi-3D model in orthogonal curvilinear coordinate. Thin-Walled Structures, 2022, 175, 109254.	2.7	19
50	On the vibration dynamics of heterogeneous panels under arbitrary boundary conditions. International Journal of Engineering Science, 2022, 178, 103727.	2.7	19
51	Free Vibration Analysis of Triclinic Nanobeams Based on the Differential Quadrature Method. Applied Sciences (Switzerland), 2019, 9, 3517.	1.3	18
52	Analysis of elastic bulk waves in functionally graded triclinic nanoplates using a quasi-3D bi-Helmholtz nonlocal strain gradient model. European Journal of Mechanics, A/Solids, 2019, 78, 103822.	2.1	17
53	Characteristics of elastic waves in radial direction of anisotropic solid sphere, a new closed-form solution. European Journal of Mechanics, A/Solids, 2019, 76, 36-45.	2.1	15
54	Assessment of Reuss, Tamura, and LRVE models for vibration analysis of functionally graded nanoplates. Archives of Civil and Mechanical Engineering, 2022, 22, .	1.9	9

#	Article	lF	CITATIONS
55	Wave propagation in carbon nanotube-reinforced nanocomposite doubly-curved shells resting on a viscoelastic foundation. Waves in Random and Complex Media, 0 , , 1 -24.	1.6	2
56	Free Vibration of Functionally Graded Carbon Nanotube-reinforced Doubly-curved Shells. Current Mechanics and Advanced Materials, 2021, 1, 39-49.	0.1	0