
Michael R Deans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/631497/publications.pdf Version: 2024-02-01

MICHAEL P. DEAN

#	Article	IF	CITATIONS
1	Fat3 acts through independent cytoskeletal effectors to coordinate asymmetric cell behaviors during polarized circuit assembly. Cell Reports, 2022, 38, 110307.	6.4	8
2	Planar cell polarity signaling guides cochlear innervation. Developmental Biology, 2022, 486, 1-4.	2.0	2
3	Conserved and Divergent Principles of Planar Polarity Revealed by Hair Cell Development and Function. Frontiers in Neuroscience, 2021, 15, 742391.	2.8	12
4	Implication of Vestibular Hair Cell Loss of Planar Polarity for the Canal and Otolith-Dependent Vestibulo-Ocular Reflexes in Celsr1–/– Mice. Frontiers in Neuroscience, 2021, 15, 750596.	2.8	7
5	Fgf8 genetic labeling reveals the early specification of vestibular hair cell type in mouse utricle. Development (Cambridge), 2020, 147, .	2.5	9
6	Differential role of planar cell polarity gene Vangl2 in embryonic and adult mammalian kidneys. PLoS ONE, 2020, 15, e0230586.	2.5	8
7	Differential role of planar cell polarity gene Vangl2 in embryonic and adult mammalian kidneys. , 2020, 15, e0230586.		Ο
8	Differential role of planar cell polarity gene Vangl2 in embryonic and adult mammalian kidneys. , 2020, 15, e0230586.		0
9	Differential role of planar cell polarity gene Vangl2 in embryonic and adult mammalian kidneys. , 2020, 15, e0230586.		Ο
10	Differential role of planar cell polarity gene Vangl2 in embryonic and adult mammalian kidneys. , 2020, 15, e0230586.		0
11	Topologically correct central projections of tetrapod inner ear afferents require Fzd3. Scientific Reports, 2019, 9, 10298.	3.3	13
12	<i>Frizzled3</i> and <i>Frizzled6</i> Cooperate with <i>Vangl2</i> to Direct Cochlear Innervation by Type II Spiral Ganglion Neurons. Journal of Neuroscience, 2019, 39, 8013-8023.	3.6	25
13	Domineering non-autonomy in Vangl1;Vangl2 double mutants demonstrates intercellular PCP signaling in the vertebrate inner ear. Developmental Biology, 2018, 437, 17-26.	2.0	16
14	A non-autonomous function of the core PCP protein VANGL2 directs peripheral axon turning in the developing cochlea. Development (Cambridge), 2018, 145, .	2.5	21
15	Celsr1 coordinates the planar polarity of vestibular hair cells during inner ear development. Developmental Biology, 2017, 423, 126-137.	2.0	40
16	Planar cell polarity-dependent and independent functions in the emergence of tissue-scale hair follicle patterns. Developmental Biology, 2017, 428, 188-203.	2.0	35
17	A tectorin-based matrix and planar-cell-polarity genes are required for normal collagen-fibril orientation in the developing tectorial membrane. Development (Cambridge), 2017, 144, 3978-3989.	2.5	35
18	Defective Angiogenesis and Intraretinal Bleeding in Mouse Models With Disrupted Inner Retinal		9

Lamination. , 2016, 57, 1563.

MICHAEL R DEANS

#	Article	IF	CITATIONS
19	Disparate Regulatory Mechanisms Control Fat3 and P75NTR Protein Transport through a Conserved Kif5-Interaction Domain. PLoS ONE, 2016, 11, e0165519.	2.5	9
20	Ciliary proteins Bbs8 and Ift20 promote planar cell polarity in the cochlea. Development (Cambridge), 2015, 142, 555-566.	2.5	63
21	A balance of form and function: Planar polarity and development of the vestibular maculae. Seminars in Cell and Developmental Biology, 2013, 24, 490-498.	5.0	57
22	Postnatal Refinement of Auditory Hair Cell Planar Polarity Deficits Occurs in the Absence of Vangl2. Journal of Neuroscience, 2013, 33, 14001-14016.	3.6	68
23	Comparison of Phenotypes between Different vangl2 Mutants Demonstrates Dominant Effects of the Looptail Mutation during Hair Cell Development. PLoS ONE, 2012, 7, e31988.	2.5	112
24	Control of Neuronal Morphology by the Atypical Cadherin Fat3. Neuron, 2011, 71, 820-832.	8.1	92
25	Mammalian Otolin: A Multimeric Glycoprotein Specific to the Inner Ear that Interacts with Otoconial Matrix Protein Otoconin-90 and Cerebellin-1. PLoS ONE, 2010, 5, e12765.	2.5	91
26	Asymmetric Distribution of Prickle-Like 2 Reveals an Early Underlying Polarization of Vestibular Sensory Epithelia in the Inner Ear. Journal of Neuroscience, 2007, 27, 3139-3147.	3.6	135
27	Connexin36 Is Essential for Transmission of Rod-Mediated Visual Signals in the Mammalian Retina. Neuron, 2002, 36, 703-712.	8.1	390
28	Mouse Horizontal Cells do not Express Connexin26 or Connexin36. Cell Communication and Adhesion, 2001, 8, 361-366.	1.0	46
29	Functional characteristics of skate connexin35, a member of the γ subfamily of connexins expressed in the vertebrate retina. European Journal of Neuroscience, 1999, 11, 1883-1890.	2.6	78
30	Connexin mutations in deafness. Nature, 1998, 394, 630-631.	27.8	119