Yang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6314773/publications.pdf Version: 2024-02-01

		430754	454834
29	1,854	18	30
papers	citations	h-index	g-index
32	32	32	3116
all docs	docs citations	times ranked	citing authors

VANC VANC

#	Article	IF	CITATIONS
1	A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nature Biotechnology, 2016, 34, 334-338.	9.4	476
2	Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. Journal of Controlled Release, 2012, 158, 108-114.	4.8	279
3	Systemic Delivery of Modified mRNA Encoding Herpes Simplex Virus 1 Thymidine Kinase for Targeted Cancer Gene Therapy. Molecular Therapy, 2013, 21, 358-367.	3.7	164
4	Systemic Delivery of siRNA via LCP Nanoparticle Efficiently Inhibits Lung Metastasis. Molecular Therapy, 2012, 20, 609-615.	3.7	116
5	SKLB1002, a Novel Potent Inhibitor of VEGF Receptor 2 Signaling, Inhibits Angiogenesis and Tumor Growth <i>In Vivo</i> . Clinical Cancer Research, 2011, 17, 4439-4450.	3.2	92
6	Nanoparticle Delivery of Pooled siRNA for Effective Treatment of Non-Small Cell Lung Caner. Molecular Pharmaceutics, 2012, 9, 2280-2289.	2.3	79
7	Modulating the Tumor Microenvironment via Oncolytic Viruses and CSF-1R Inhibition Synergistically Enhances Anti-PD-1 Immunotherapy. Molecular Therapy, 2019, 27, 244-260.	3.7	67
8	CRISPR/Cas9-mediated in vivo gene targeting corrects hemostasis in newborn and adult factor IX–knockout mice. Blood, 2019, 133, 2745-2752.	0.6	57
9	A mutation-independent CRISPR-Cas9–mediated gene targeting approach to treat a murine model of ornithine transcarbamylase deficiency. Science Advances, 2020, 6, eaax5701.	4.7	44
10	Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field. Science China Life Sciences, 2017, 60, 458-467.	2.3	40
11	Progress in the treatment of infantile hemangioma. Annals of Translational Medicine, 2019, 7, 692-692.	0.7	38
12	Applications of Genome Editing Technology in Animal Disease Modeling and Gene Therapy. Computational and Structural Biotechnology Journal, 2019, 17, 689-698.	1.9	35
13	CRISPR/Cas9-mediated correction of human genetic disease. Science China Life Sciences, 2017, 60, 447-457.	2.3	34
14	CRISPR-Cas9-Mediated InÂVivo Gene Integration at the Albumin Locus Recovers Hemostasis in Neonatal and Adult Hemophilia B Mice. Molecular Therapy - Methods and Clinical Development, 2020, 18, 520-531.	1.8	34
15	Targeted demethylation of the SARI promotor impairs colon tumour growth. Cancer Letters, 2019, 448, 132-143.	3.2	31
16	Carrier strategies boost the application of CRISPR/Cas system in gene therapy. Exploration, 2022, 2, .	5.4	30
17	InÂvivo PCSK9 gene editing using an all-in-one self-cleavage AAV-CRISPR system. Molecular Therapy - Methods and Clinical Development, 2021, 20, 652-659.	1.8	26
18	A Novel Antitumor Strategy: Simultaneously Inhibiting Angiogenesis and Complement by Targeting VEGFA/PIGF and C3b/C4b. Molecular Therapy - Oncolytics, 2020, 16, 20-29.	2.0	20

YANG YANG

#	Article	IF	CITATIONS
19	Efficient Inhibition of Non-Small-Cell Lung Cancer Xenograft by Systemic Delivery of Plasmid-Encoding Short-Hairpin RNA Targeting VEGF. Cancer Biotherapy and Radiopharmaceuticals, 2010, 25, 65-73.	0.7	18
20	sgBE: a structure-guided design of sgRNA architecture specifies base editing window and enables simultaneous conversion of cytosine and adenosine. Genome Biology, 2020, 21, 222.	3.8	15
21	BATF2 prevents glioblastoma multiforme progression by inhibiting recruitment of myeloid-derived suppressor cells. Oncogene, 2021, 40, 1516-1530.	2.6	14
22	SARI attenuates colon inflammation by promoting STAT1 degradation in intestinal epithelial cells. Mucosal Immunology, 2019, 12, 1130-1140.	2.7	13
23	A universal strategy for AAV delivery of base editors to correct genetic point mutations in neonatal PKU mice. Molecular Therapy - Methods and Clinical Development, 2022, 24, 230-240.	1.8	13
24	Eliminating predictable DNA off-target effects of cytosine base editor by using dual guiders including sgRNA and TALE. Molecular Therapy, 2022, 30, 2443-2451.	3.7	7
25	Recent Advances in Therapeutic Genome Editing in China. Human Gene Therapy, 2018, 29, 136-145.	1.4	5
26	Delivery of nVEGFi using AAV8 for the treatment of neovascular age-related macular degeneration. Molecular Therapy - Methods and Clinical Development, 2022, 24, 210-221.	1.8	5
27	IL15 combined with Caspy2 provides enhanced therapeutic efficiency against murine malignant neoplasm growth and metastasis. Cancer Gene Therapy, 2012, 19, 460-467.	2.2	4
28	SARI suppresses colitisâ€associated cancer development by maintaining MCPâ€1â€mediated tumourâ€associated macrophage recruitment. Journal of Cellular and Molecular Medicine, 2020, 24, 189-201.	1.6	4
29	Liver-directed gene therapy corrects neurologic disease in a murine model of mucopolysaccharidosis type I-Hurler. Molecular Therapy - Methods and Clinical Development, 2022, 25, 370-381.	1.8	3