Kim Y Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6314567/publications.pdf

Version: 2024-02-01

1			71102	82547
	72	7,013	41	72
	papers	citations	h-index	g-index
ľ				
	70	72	72	5072
	73	73	73	5973
	all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genome-wide analyses of human noroviruses provide insights on evolutionary dynamics and evidence of coexisting viral populations evolving under recombination constraints. PLoS Pathogens, 2021, 17, e1009744.	4.7	29
2	A luciferase-based approach for measuring HBGA blockade antibody titers against human norovirus. Journal of Virological Methods, 2021, 297, 114196.	2.1	4
3	Genomic Analyses of Human Sapoviruses Detected over a 40-Year Period Reveal Disparate Patterns of Evolution among Genotypes and Genome Regions. Viruses, 2020, 12, 516.	3.3	14
4	Human norovirus targets enteroendocrine epithelial cells in the small intestine. Nature Communications, 2020, 11, 2759.	12.8	71
5	Absence of norovirus contamination in shellfish harvested and commercialized in the Northeast coast of Brazil. Brazilian Journal of Medical and Biological Research, 2020, 53, e9529.	1.5	4
6	The Antigenic Topology of Norovirus as Defined by B and T Cell Epitope Mapping: Implications for Universal Vaccines and Therapeutics. Viruses, 2019, 11, 432.	3.3	22
7	Updated classification of norovirus genogroups and genotypes. Journal of General Virology, 2019, 100, 1393-1406.	2.9	535
8	Norovirus surveillance comes of age: the impact of NoroNet. Lancet Infectious Diseases, The, 2018, 18, 482-483.	9.1	7
9	Norovirus, astrovirus, and sapovirus among immunocompromised patients at a tertiary care research hospital. Diagnostic Microbiology and Infectious Disease, 2018, 92, 143-146.	1.8	27
10	Comparative Transcriptomic Response of Primary and Immortalized Macrophages to Murine Norovirus Infection. Journal of Immunology, 2018, 200, 4157-4169.	0.8	16
11	Vesicle-Cloaked Virus Clusters Are Optimal Units for Inter-organismal Viral Transmission. Cell Host and Microbe, 2018, 24, 208-220.e8.	11.0	209
12	A Luciferase Immunoprecipitation System (LIPS) assay for profiling human norovirus antibodies. Journal of Virological Methods, 2017, 248, 116-129.	2.1	11
13	Sequential Gastroenteritis Outbreaks in a Single Year Caused by Norovirus Genotypes GII.2 and GII.6 in an Institutional Setting. Open Forum Infectious Diseases, 2017, 4, ofx236.	0.9	18
14	Static and Evolving Norovirus Genotypes: Implications for Epidemiology and Immunity. PLoS Pathogens, 2017, 13, e1006136.	4.7	205
15	Epidemiology of Norovirus Infection Among Immunocompromised Patients at a Tertiary Care Research Hospital, 2010–2013. Open Forum Infectious Diseases, 2016, 3, ofw169.	0.9	21
16	Mapping and modeling of a strain-specific epitope in the Norwalk virus capsid inner shell. Virology, 2016, 492, 232-241.	2,4	10
17	<i>Editorial Commentary i>Editorial Commentary i>: Noroviruses and B Cells. Clinical Infectious Diseases, 2016, 62, 1139-1140.</i>	5.8	7
18	Genome of Emerging Norovirus Gll.17, United States, 2014. Emerging Infectious Diseases, 2015, 21, 1477-1479.	4.3	97

#	Article	IF	CITATIONS
19	Llama Nanoantibodies with Therapeutic Potential against Human Norovirus Diarrhea. PLoS ONE, 2015, 10, e0133665.	2.5	37
20	Sequential Gastroenteritis Episodes Caused by 2 Norovirus Genotypes. Emerging Infectious Diseases, 2014, 20, 1016-1018.	4.3	44
21	Treatment of norovirus infections: Moving antivirals from the bench to the bedside. Antiviral Research, 2014, 105, 80-91.	4.1	66
22	Genetic characterization of feline calicivirus strains associated with varying disease manifestations during an outbreak season in Missouri (1995–1996). Virus Genes, 2014, 48, 96-110.	1.6	25
23	Identification and Characterization of Antibody-Binding Epitopes on the Norovirus GII.3 Capsid. Journal of Virology, 2014, 88, 1942-1952.	3.4	8
24	Proposal for a unified norovirus nomenclature and genotyping. Archives of Virology, 2013, 158, 2059-2068.	2.1	488
25	Structures of the Compact Helical Core Domains of Feline Calicivirus and Murine Norovirus VPg Proteins. Journal of Virology, 2013, 87, 5318-5330.	3.4	44
26	The Importance of Intergenic Recombination in Norovirus GII.3 Evolution. Journal of Virology, 2013, 87, 3687-3698.	3.4	72
27	The Feline Calicivirus Leader of the Capsid Protein Is Associated with Cytopathic Effect. Journal of Virology, 2013, 87, 3003-3017.	3.4	23
28	Development of Norwalk Virus-Specific Monoclonal Antibodies with Therapeutic Potential for the Treatment of Norwalk Virus Gastroenteritis. Journal of Virology, 2013, 87, 9547-9557.	3.4	47
29	Epidemiology and Evolution of Rotaviruses and Noroviruses from an Archival WHO Global Study in Children (1976–79) with Implications for Vaccine Design. PLoS ONE, 2013, 8, e59394.	2.5	50
30	Identification of a Broadly Cross-Reactive Epitope in the Inner Shell of the Norovirus Capsid. PLoS ONE, 2013, 8, e67592.	2.5	42
31	Multiple Antigenic Sites Are Involved in Blocking the Interaction of GII.4 Norovirus Capsid with ABH Histo-Blood Group Antigens. Journal of Virology, 2012, 86, 7414-7426.	3.4	49
32	Norovirus Gastroenteritis in Immunocompromised Patients. New England Journal of Medicine, 2012, 367, 2126-2132.	27.0	303
33	Immunogenicity and specificity of norovirus Consensus GII.4 virus-like particles in monovalent and bivalent vaccine formulations. Vaccine, 2012, 30, 3580-3586.	3.8	104
34	Nondegradative Role of Atg5-Atg12/ Atg16L1 Autophagy Protein Complex in Antiviral Activity of Interferon Gamma. Cell Host and Microbe, 2012, 11, 397-409.	11.0	222
35	Genetic characterization of a reptilian calicivirus (Cro1). Virology Journal, 2012, 9, 297.	3.4	4
36	Diversity of Murine Norovirus Strains Isolated from Asymptomatic Mice of Different Genetic Backgrounds within a Single U.S. Research Institute. PLoS ONE, 2011, 6, e21435.	2.5	28

#	Article	IF	CITATIONS
37	Chimpanzees as an animal model for human norovirus infection and vaccine development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 325-330.	7.1	196
38	Comparative Evolution of GII.3 and GII.4 Norovirus over a 31-Year Period. Journal of Virology, 2011, 85, 8656-8666.	3.4	138
39	Visualization of feline calicivirus replication in real-time with recombinant viruses engineered to express fluorescent reporter proteins. Virology, 2010, 400, 18-31.	2.4	22
40	Polypyrimidine Tract Binding Protein Functions as a Negative Regulator of Feline Calicivirus Translation. PLoS ONE, 2010, 5, e9562.	2.5	30
41	Evolutionary Dynamics of Gll.4 Noroviruses over a 34-Year Period. Journal of Virology, 2009, 83, 11890-11901.	3.4	259
42	A capsid gene-based real-time reverse transcription polymerase chain reaction assay for the detection of marine vesiviruses in the Caliciviridae. Journal of Virological Methods, 2009, 161, 12-18.	2.1	4
43	Nucleotidylylation of the VPg protein of a human norovirus by its proteinase-polymerase precursor protein. Virology, 2008, 374, 33-49.	2.4	46
44	Leader of the Capsid Protein in Feline Calicivirus Promotes Replication of Norwalk Virus in Cell Culture. Journal of Virology, 2008, 82, 9306-9317.	3.4	14
45	Outbreak Management and Implications of a Nosocomial Norovirus Outbreak. Clinical Infectious Diseases, 2007, 45, 534-540.	5.8	158
46	Stable expression of a Norwalk virus RNA replicon in a human hepatoma cell line. Virology, 2006, 353, 463-473.	2.4	162
47	Cleavage Map and Proteolytic Processing of the Murine Norovirus Nonstructural Polyprotein in Infected Cells. Journal of Virology, 2006, 80, 7816-7831.	3.4	186
48	Feline Calicivirus VP2 Is Essential for the Production of Infectious Virions. Journal of Virology, 2005, 79, 4012-4024.	3.4	105
49	Norovirus Proteinase-Polymerase and Polymerase Are Both Active Forms of RNA-Dependent RNA Polymerase. Journal of Virology, 2005, 79, 2393-2403.	3.4	57
50	Replication of Norovirus in Cell Culture Reveals a Tropism for Dendritic Cells and Macrophages. PLoS Biology, 2004, 2, e432.	5.6	740
51	Mutagenesis of Tyrosine 24 in the VPg Protein Is Lethal for Feline Calicivirus. Journal of Virology, 2004, 78, 4931-4935.	3.4	35
52	Calicivirus 3C-Like Proteinase Inhibits Cellular Translation by Cleavage of Poly(A)-Binding Protein. Journal of Virology, 2004, 78, 8172-8182.	3.4	104
53	Bile acids are essential for porcine enteric calicivirus replication in association with down-regulation of signal transducer and activator of transcription 1. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8733-8738.	7.1	128
54	Norwalk Virus N-Terminal Nonstructural Protein Is Associated with Disassembly of the Golgi Complex in Transfected Cells. Journal of Virology, 2004, 78, 4827-4837.	3.4	77

#	Article	IF	Citations
55	Feline calicivirus replication induces apoptosis in cultured cells. Virus Research, 2003, 94, 1-10.	2.2	47
56	In Vitro Proteolytic Processing of the MD145 Norovirus ORF1 Nonstructural Polyprotein Yields Stable Precursors and Products Similar to Those Detected in Calicivirus-Infected Cells. Journal of Virology, 2003, 77, 10957-10974.	3.4	128
57	IV, 2. Feline calicivirus as a model for the study of calicivirus replication. Perspectives in Medical Virology, 2003, , 467-488.	0.1	3
58	Isolation of Enzymatically Active Replication Complexes from Feline Calicivirus-Infected Cells. Journal of Virology, 2002, 76, 8582-8595.	3.4	60
59	A Predominant Role for Norwalkâ€like Viruses as Agents of Epidemic Gastroenteritis in Maryland Nursing Homes for the Elderly. Journal of Infectious Diseases, 2002, 185, 133-146.	4.0	151
60	Processing Map and Essential Cleavage Sites of the Nonstructural Polyprotein Encoded by ORF1 of the Feline Calicivirus Genome. Journal of Virology, 2002, 76, 7060-7072.	3.4	101
61	The genome of hawaii virus and its relationship with other members of the caliciviridae. Virus Genes, 2001, 23, 5-16.	1.6	26
62	Proteinase-Polymerase Precursor as the Active Form of Feline Calicivirus RNA-Dependent RNA Polymerase. Journal of Virology, 2001, 75, 1211-1219.	3.4	55
63	Identification and Genomic Mapping of the ORF3 and VPg Proteins in Feline Calicivirus Virions. Virology, 2000, 277, 193-203.	2.4	91
64	Recovery and Altered Neutralization Specificities of Chimeric Viruses Containing Capsid Protein Domain Exchanges from Antigenically Distinct Strains of Feline Calicivirus. Journal of Virology, 2000, 74, 1079-1084.	3.4	34
65	Summary of the First International Workshop on Human Caliciviruses. Journal of Infectious Diseases, 2000, 181, S252-S253.	4.0	13
66	Mapping of the Feline Calicivirus Proteinase Responsible for Autocatalytic Processing of the Nonstructural Polyprotein and Identification of a Stable Proteinase-Polymerase Precursor Protein. Journal of Virology, 1999, 73, 6626-6633.	3.4	72
67	Characterization of a recombinant human calicivirus capsid protein expressed in mammalian cells. Virus Research, 1998, 55, 129-141.	2.2	16
68	Cleavage of the Feline Calicivirus Capsid Precursor Is Mediated by a Virus-Encoded Proteinase. Journal of Virology, 1998, 72, 3051-3059.	3.4	107
69	Correlation of patient immune responses with genetically characterized small round-structured viruses involved in outbreaks of nonbacterial acute gastroenteritis in the United States, 1990 to 1995., 1997, 53, 372-383.		171
70	RNA Transcripts Derived from a Cloned Full-Length Copy of the Feline Calicivirus Genome Do Not Require VpG for Infectivity. Virology, 1995, 210, 383-390.	2.4	149
71	Molecular Characterization and Expression of the Capsid Protein of a Norwalk-like Virus Recovered from a Desert Shield Troop with Gastroenteritis. Virology, 1994, 200, 319-325.	2.4	96
72	Diarrheal Disease during Operation Desert Shield. New England Journal of Medicine, 1991, 325, 1423-1428.	27.0	264