Roman J Dial

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6314560/publications.pdf

Version: 2024-02-01

471509 434195 1,148 35 17 31 citations h-index g-index papers 37 37 37 1661 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Flight plan for the future: floatplane pilots and researchers team up to predict invasive species dispersal in Alaska. Biological Invasions, 2022, 24, 1229-1245.	2.4	3
2	Estimating Net Primary Productivity (NPP) and Debris-Fall in Forests Using Lidar Time Series. Remote Sensing, 2021, 13, 891.	4.0	2
3	Using fractal selfâ€similarity to increase precision of shrub biomass estimates. Ecology and Evolution, 2021, 11, 4866-4873.	1.9	1
4	Modeling the impacts of climate change on mass balance and discharge of Eklutna Glacier, Alaska, 1985–2019. Journal of Glaciology, 2021, 67, 909-920.	2.2	5
5	Biological albedo reduction on ice sheets, glaciers, and snowfields. Earth-Science Reviews, 2021, 220, 103728.	9.1	30
6	The climate envelope of Alaska's northern treelines: implications for controlling factors and future treeline advance. Ecography, 2021, 44, 1710-1722.	4.5	15
7	The Biogeography of the Glacier Biome. , 2020, , 261-269.		1
8	Pathways of tundra encroachment by trees and tall shrubs in the western Brooks Range of Alaska. Ecography, 2020, 43, 769-778.	4.5	20
9	Mapping tall shrub biomass in Alaska at landscape scale using structure-from-motion photogrammetry and lidar. Remote Sensing of Environment, 2020, 245, 111841.	11.0	32
10	Exploring sample crossâ€contamination in fish epidermal mucus. Journal of Fish Biology, 2019, 95, 647-650.	1.6	2
11	What color should glacier algae be? An ecological role for red carbon in the cryosphere. FEMS Microbiology Ecology, 2018, 94, .	2.7	35
12	Declining growth of deciduous shrubs in the warming climate of continental western Greenland. Journal of Ecology, 2018, 106, 640-654.	4.0	53
13	Thermal segregation drives patterns of alder and willow expansion in a montane ecosystem subject to climate warming. Journal of Ecology, 2017, 105, 935-946.	4.0	15
14	The role of microbes in snowmelt and radiative forcing on an Alaskan icefield. Nature Geoscience, 2017, 10, 754-759.	12.9	94
15	Bacterial Microbiota Associated with the Glacier Ice Worm Is Dominated by Both Worm-Specific and Glacier-Derived Facultative Lineages. Microbes and Environments, 2017, 32, 32-39.	1.6	12
16	Shrubline but not treeline advance matches climate velocity in montane ecosystems of southâ€eentral Alaska. Global Change Biology, 2016, 22, 1841-1856.	9.5	60
17	The Role of Temperature in the Distribution of the Glacier Ice Worm, <i>Mesenchytraeus solifugus < /i> (Annelida: Oligochaeta: Enchytraeidae). Arctic, Antarctic, and Alpine Research, 2016, 48, 199-211.</i>	1.1	20
18	Census of bacterial microbiota associated with the glacier ice worm Mesenchytraeus solifugus. FEMS Microbiology Ecology, 2015, 91, .	2.7	35

#	Article	IF	CITATIONS
19	CO ₂ exchange along a hydrologic gradient in the Kenai Lowlands, AK: feedback implications of wetland drying and vegetation succession. Ecohydrology, 2013, 6, 38-50.	2.4	9
20	Historical biogeography of the North American glacier ice worm, Mesenchytraeus solifugus (Annelida: Oligochaeta: Enchytraeidae). Molecular Phylogenetics and Evolution, 2012, 63, 577-584.	2.7	22
21	Reply to comment by Gracz on "Wetland drying and succession across the Kenai Peninsula Lowlands, south-central Alaskaâ€Appears in the Can. J. For. Res. 35 : 1931–1941 Canadian Journal of Forest Research, 2011, 41, 429-433.	1.7	1
22	Recent woody invasion of wetlands on the Kenai Peninsula Lowlands, south-central Alaska: a major regime shift after 18 000Âyears of wet ⟨i⟩Sphagnum⟨/i⟩–sedge peat recruitment. Canadian Journal of Forest Research, 2009, 39, 2033-2046.	1.7	77
23	Changes in the alpine forestâ€ŧundra ecotone commensurate with recent warming in southcentral Alaska: Evidence from orthophotos and field plots. Journal of Geophysical Research, 2007, 112, .	3.3	54
24	Arthropod Abundance, Canopy Structure, and Microclimate in a Bornean Lowland Tropical Rain Forest1. Biotropica, 2006, 38, 643-652.	1.6	74
25	Spatial distribution and abundance of red snow algae on the Harding Icefield, Alaska derived from a satellite image. Geophysical Research Letters, 2006, 33, .	4.0	77
26	Wetland drying and succession across the Kenai Peninsula Lowlands, south-central Alaska. Canadian Journal of Forest Research, 2005, 35, 1931-1941.	1.7	132
27	Physical Transport, Heterogeneity, and Interactions Involving Canopy Anoles. , 2004, , 270-296.		0
28	How trees and forests inform biodiversity and ecosystem informatics. Computing in Science and Engineering, 2003, 5, 32-43.	1.2	4
29	THEORY OF MARINE COMMUNITIES: THE INTERMEDIATE DISTURBANCE HYPOTHESIS. Ecology, 1998, 79, 1412-1424.	3.2	111
30	Beyond MacArthur: New Attempts at Unification. Conservation Biology, 1996, 10, 1564-1566.	4.7	0
31	Natural History Observations of Anolisomyia rufianalis (Diptera: Sarcophagidae) Infesting Anolis Lizards in a Rain Forest Canopy. Environmental Entomology, 1996, 25, 1325-1328.	1.4	11
32	Species-Area Curves and Koopowits et al.'s Simulation of Stochastic Extinctions. Conservation Biology, 1995, 9, 960-961.	4.7	7
33	Experimental Removal of Insectivores from Rain Forest Canopy: Direct and Indirect Effects. Ecology, 1995, 76, 1821-1834.	3.2	105
34	Extinction or miscalculation?. Nature, 1994, 370, 104-105.	27.8	14
35	Distribution and abundance of exotic earthworms within a boreal forest system in southcentral Alaska. NeoBiota, 0, 28, 67-86.	1.0	15