
Meng Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6314186/publications.pdf Version: 2024-02-01

MENC SUN

#	Article	IF	CITATIONS
1	Earthâ€Rich Transition Metal Phosphide for Energy Conversion and Storage. Advanced Energy Materials, 2016, 6, 1600087.	10.2	437
2	A Critical Review on Energy Conversion and Environmental Remediation of Photocatalysts with Remodeling Crystal Lattice, Surface, and Interface. ACS Nano, 2019, 13, 9811-9840.	7.3	331
3	Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale, 2015, 7, 1250-1269.	2.8	290
4	Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: Role of polyelectrolyte charge, ion size, and ionic strength. Journal of Membrane Science, 2018, 559, 98-106.	4.1	227
5	Highly efficient and sustainable non-precious-metal Fe–N–C electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 2527-2539.	5.2	214
6	Reinventing Fenton Chemistry: Iron Oxychloride Nanosheet for pH-Insensitive H ₂ O ₂ Activation. Environmental Science and Technology Letters, 2018, 5, 186-191.	3.9	202
7	Mechanism of Heterogeneous Fenton Reaction Kinetics Enhancement under Nanoscale Spatial Confinement. Environmental Science & Technology, 2020, 54, 10868-10875.	4.6	188
8	Dechlorination of Trichloroacetic Acid Using a Noble Metal-Free Graphene–Cu Foam Electrode via Direct Cathodic Reduction and Atomic H*. Environmental Science & Technology, 2016, 50, 3829-3837.	4.6	169
9	Graphene oxide membranes: Functional structures, preparation and environmental applications. Nano Today, 2018, 20, 121-137.	6.2	156
10	Formation of Bi ₂ WO ₆ Bipyramids with Vacancy Pairs for Enhanced Solarâ€Driven Photoactivity. Advanced Functional Materials, 2015, 25, 3726-3734.	7.8	155
11	Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production. Nature Communications, 2020, 11, 6228.	5.8	142
12	Electrified Membranes for Water Treatment Applications. ACS ES&T Engineering, 2021, 1, 725-752.	3.7	139
13	Membrane-Confined Iron Oxychloride Nanocatalysts for Highly Efficient Heterogeneous Fenton Water Treatment. Environmental Science & Technology, 2021, 55, 9266-9275.	4.6	135
14	Reactive, Self-Cleaning Ultrafiltration Membrane Functionalized with Iron Oxychloride Nanocatalysts. Environmental Science & Technology, 2018, 52, 8674-8683.	4.6	124
15	Tuning Pb(II) Adsorption from Aqueous Solutions on Ultrathin Iron Oxychloride (FeOCl) Nanosheets. Environmental Science & Technology, 2019, 53, 2075-2085.	4.6	121
16	α-Fe ₂ O ₃ spherical nanocrystals supported on CNTs as efficient non-noble electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 13635-13640.	5.2	110
17	Redox Conversion of Chromium(VI) and Arsenic(III) with the Intermediates of Chromium(V) and Arsenic(IV) via AuPd/CNTs Electrocatalysis in Acid Aqueous Solution. Environmental Science & Technology, 2015, 49, 9289-9297.	4.6	91
18	In Situ Electrochemical Generation of Reactive Chlorine Species for Efficient Ultrafiltration Membrane Self-Cleaning. Environmental Science & Technology, 2020, 54, 6997-7007.	4.6	84

Meng Sun

#	Article	IF	CITATIONS
19	Phase-Mediated Heavy Metal Adsorption from Aqueous Solutions Using Two-Dimensional Layered MoS ₂ . ACS Applied Materials & Interfaces, 2019, 11, 38789-38797.	4.0	82
20	α- and γ-Fe2O3 nanoparticle/nitrogen doped carbon nanotube catalysts for high-performance oxygen reduction reaction. Science China Materials, 2015, 58, 683-692.	3.5	73
21	Efficient conversion of dimethylarsinate into arsenic and its simultaneous adsorption removal over FeCx/N-doped carbon fiber composite in an electro-Fenton process. Water Research, 2016, 100, 57-64.	5.3	71
22	Engineering Carbon Nanotube Forest Superstructure for Robust Thermal Desalination Membranes. Advanced Functional Materials, 2019, 29, 1903125.	7.8	48
23	Visible-Light Induced Photocatalytic Activity of Electrospun-TiO ₂ in Arsenic(III) Oxidation. ACS Applied Materials & Interfaces, 2015, 7, 511-518.	4.0	42
24	AuPd/Fe3O4-based three-dimensional electrochemical system for efficiently catalytic degradation of 1-butyl-3-methylimidazolium hexafluorophosphate. Electrochimica Acta, 2015, 186, 328-336.	2.6	37
25	Electrochemical-Osmotic Process for Simultaneous Recovery of Electric Energy, Water, and Metals from Wastewater. Environmental Science & Technology, 2020, 54, 8430-8442.	4.6	31
26	Catalytic Membrane with Copper Single-Atom Catalysts for Effective Hydrogen Peroxide Activation and Pollutant Destruction. Environmental Science & amp; Technology, 2022, 56, 8733-8745.	4.6	31
27	Highly Efficient AuPd/Carbon Nanotube Nanocatalysts for the Electroâ€Fenton Process. Chemistry - A European Journal, 2015, 21, 7611-7620.	1.7	30
28	Enhanced Photocatalytic Water Decontamination by Micro–Nano Bubbles: Measurements and Mechanisms. Environmental Science & Technology, 2021, 55, 7025-7033.	4.6	29
29	Optimization and control of Electro-Fenton process by pH inflection points: A case of treating acrylic fiber manufacturing wastewater. Chemical Engineering Journal, 2015, 269, 399-407.	6.6	27
30	Enhancing destruction of copper (I) cyanide and subsequent recovery of Cu(I) by a novel electrochemical system combining activated carbon fiber and stainless steel cathodes. Chemical Engineering Journal, 2017, 330, 1187-1194.	6.6	26
31	Photo-electrochemical Osmotic System Enables Simultaneous Metal Recovery and Electricity Generation from Wastewater. Environmental Science & Technology, 2021, 55, 604-613.	4.6	26
32	Ionic Liquid Assisted Electrospun Cellulose Acetate Fibers for Aqueous Removal of Triclosan. Langmuir, 2015, 31, 1820-1827.	1.6	24
33	Engineering hierarchical NiFe-layered double hydroxides derived phosphosulfide for high-efficiency hydrogen evolving electrocatalysis. International Journal of Hydrogen Energy, 2019, 44, 16378-16386.	3.8	19
34	High-performance iron-doped molybdenum disulfide photocatalysts enhance peroxymonosulfate activation for water decontamination. Chemical Engineering Journal, 2022, 446, 137380.	6.6	19
35	Electrospun silica nanofiber mats functionalized with ceria nanoparticles for water decontamination. RSC Advances, 2019, 9, 19408-19417.	1.7	16
36	Emerging Challenges and Opportunities for Electrified Membranes to Enhance Water Treatment. Environmental Science & Technology, 2022, 56, 3832-3835.	4.6	16

Meng Sun

#	Article	IF	CITATIONS
37	Precisely Engineered Photoreactive Titanium Nanoarray Coating to Mitigate Biofouling in Ultrafiltration. ACS Applied Materials & Interfaces, 2021, 13, 9975-9984.	4.0	14
38	Fast Screening of Corrosion Trends in Metallic Glasses. ACS Combinatorial Science, 2019, 21, 666-674.	3.8	9
39	A Robust Flow-Through Platform for Organic Contaminant Removal. Cell Reports Physical Science, 2021, 2, 100296.	2.8	8
40	High-Performance, Free-Standing Symmetric Hybrid Membranes for Osmotic Separation. ACS Applied Materials & Interfaces, 2021, 13, 8967-8975.	4.0	7
41	Reply to "A resurrection of the Haber-Weiss reaction― Nature Communications, 2022, 13, 395.	5.8	3
42	Valuable resources in water: why and how to recover?. Resources, Conservation & Recycling Advances, 2022, , 200089.	1.1	0