List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6313950/publications.pdf Version: 2024-02-01

Спульни Гли

#	Article	IF	CITATIONS
1	Natural <scp>D</scp> â€glucose as a biodegradable MRI contrast agent for detecting cancer. Magnetic Resonance in Medicine, 2012, 68, 1764-1773.	1.9	295
2	Nuts and bolts of chemical exchange saturation transfer MRI. NMR in Biomedicine, 2013, 26, 810-828.	1.6	254
3	The role of imaging in 2019 novel coronavirus pneumonia (COVID-19). European Radiology, 2020, 30, 4874-4882.	2.3	223
4	MRI-detectable pH nanosensors incorporated intoÂhydrogels for inÂvivo sensing of transplanted-cell viability. Nature Materials, 2013, 12, 268-275.	13.3	189
5	Furin-mediated intracellular self-assembly of olsalazine nanoparticles for enhanced magnetic resonance imaging and tumour therapy. Nature Materials, 2019, 18, 1376-1383.	13.3	164
6	Dynamic Glucose-Enhanced (DGE) MRI: Translation to Human Scanning and First Results in Glioma Patients. Tomography, 2015, 1, 105-114.	0.8	153
7	The cytotoxicity and mechanisms of 1,2-naphthoquinone thiosemicarbazone and its metal derivatives against MCF-7 human breast cancer cells. Toxicology and Applied Pharmacology, 2004, 197, 40-48.	1.3	117
8	Design and characterization of a new irreversible responsive PARACEST MRI contrast agent that detects nitric oxide. Magnetic Resonance in Medicine, 2007, 58, 1249-1256.	1.9	112
9	In vivo multicolor molecular MR imaging using diamagnetic chemical exchange saturation transfer liposomes. Magnetic Resonance in Medicine, 2012, 67, 1106-1113.	1.9	104
10	Using Two Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agents for Molecular Imaging Studies. Accounts of Chemical Research, 2009, 42, 915-924.	7.6	103
11	Highâ€ŧhroughput screening of chemical exchange saturation transfer MR contrast agents. Contrast Media and Molecular Imaging, 2010, 5, 162-170.	0.4	103
12	Multiwalled Nanotubes Formed by Catanionic Mixtures of Drug Amphiphiles. ACS Nano, 2014, 8, 12690-12700.	7.3	98
13	One-Component Supramolecular Filament Hydrogels as Theranostic Label-Free Magnetic Resonance Imaging Agents. ACS Nano, 2017, 11, 797-805.	7.3	95
14	Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer. Magnetic Resonance in Medicine, 2015, 74, 1556-1563.	1.9	94
15	Vaginal Delivery of Paclitaxel via Nanoparticles with Nonâ€Mucoadhesive Surfaces Suppresses Cervical Tumor Growth. Advanced Healthcare Materials, 2014, 3, 1044-1052.	3.9	85
16	Monitoring Enzyme Activity Using a Diamagnetic Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agent. Journal of the American Chemical Society, 2011, 133, 16326-16329.	6.6	83
17	Transforming Thymidine into a Magnetic Resonance Imaging Probe for Monitoring Gene Expression. Journal of the American Chemical Society, 2013, 135, 1617-1624.	6.6	80
18	PARACEST MRI with improved temporal resolution. Magnetic Resonance in Medicine, 2009, 61, 399-408.	1.9	74

#	Article	IF	CITATIONS
19	Label-free CEST MRI Detection of Citicoline-Liposome Drug Delivery in Ischemic Stroke. Theranostics, 2016, 6, 1588-1600.	4.6	74
20	Salicylic Acid and Analogues as diaCEST MRI Contrast Agents with Highly Shifted Exchangeable Proton Frequencies. Angewandte Chemie - International Edition, 2013, 52, 8116-8119.	7.2	73
21	Establishing the Lysine-rich Protein CEST Reporter Gene as a CEST MR Imaging Detector for Oncolytic Virotherapy. Radiology, 2015, 275, 746-754.	3.6	70
22	Metal Ion Sensing Using Ion Chemical Exchange Saturation Transfer ¹⁹ F Magnetic Resonance Imaging. Journal of the American Chemical Society, 2013, 135, 12164-12167.	6.6	67
23	Imaging in Vivo Extracellular pH with a Single Paramagnetic Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agent. Molecular Imaging, 2012, 11, 7290.2011.00026.	0.7	64
24	Human Protamine-1 as an MRI Reporter Gene Based on Chemical Exchange. ACS Chemical Biology, 2014, 9, 134-138.	1.6	64
25	Imaging in vivo extracellular pH with a single paramagnetic chemical exchange saturation transfer magnetic resonance imaging contrast agent. Molecular Imaging, 2012, 11, 47-57.	0.7	63
26	Label-free in vivo molecular imaging of underglycosylated mucin-1 expression in tumour cells. Nature Communications, 2015, 6, 6719.	5.8	62
27	Improved pH measurements with a single PARACEST MRI contrast agent. Contrast Media and Molecular Imaging, 2012, 7, 26-34.	0.4	59
28	Multimodal imaging of sustained drug release from 3-D poly(propylene fumarate) (PPF) scaffolds. Journal of Controlled Release, 2011, 156, 239-245.	4.8	58
29	A dextran-based probe for the targeted magnetic resonance imaging of tumours expressing prostate-specific membrane antigen. Nature Biomedical Engineering, 2017, 1, 977-982.	11.6	58
30	Recent developments in the determination of urinary cancer biomarkers by capillary electrophoresis. Electrophoresis, 2004, 25, 1473-1484.	1.3	56
31	MRI biosensor for protein kinase A encoded by a single synthetic gene. Magnetic Resonance in Medicine, 2012, 68, 1919-1923.	1.9	55
32	A self alibrating PARACEST MRI contrast agent that detects esterase enzyme activity. Contrast Media and Molecular Imaging, 2011, 6, 219-228.	0.4	54
33	A diaCEST MRI approach for monitoring liposomal accumulation in tumors. Journal of Controlled Release, 2014, 180, 51-59.	4.8	52
34	Simultaneous determination of catecholamines and polyamines in PC-12 cell extracts by micellar electrokinetic capillary chromatography with ultraviolet absorbance detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 805, 281-288.	1.2	51
35	CEST phase mapping using a length and offset varied saturation (LOVARS) scheme. Magnetic Resonance in Medicine, 2012, 68, 1074-1086.	1.9	51
36	Protein aggregation linked to Alzheimer's disease revealed by saturation transfer MRI. NeuroImage, 2019, 188, 380-390.	2.1	50

#	Article	IF	CITATIONS
37	CEST-MRI detects metabolite levels altered by breast cancer cell aggressiveness and chemotherapy response. NMR in Biomedicine, 2016, 29, 806-816.	1.6	49
38	Monitoring Tumor Response to Antivascular Therapy Using Non-Contrast Intravoxel Incoherent Motion Diffusion-Weighted MRI. Cancer Research, 2017, 77, 3491-3501.	0.4	49
39	CEST theranostics: label-free MR imaging of anticancer drugs. Oncotarget, 2016, 7, 6369-6378.	0.8	49
40	Synthesis of a probe for monitoring HSV1-tk reporter gene expression using chemical exchange saturation transfer MRI. Nature Protocols, 2013, 8, 2380-2391.	5.5	47
41	Developing imidazoles as CEST MRI pH sensors. Contrast Media and Molecular Imaging, 2016, 11, 304-312.	0.4	47
42	Carbon Dots as a New Class of Diamagnetic Chemical Exchange Saturation Transfer (diaCEST) MRI Contrast Agents. Angewandte Chemie - International Edition, 2019, 58, 9871-9875.	7.2	45
43	Highly efficient magnetic labelling allows MRI tracking of the homing of stem cellâ€derived extracellular vesicles following systemic delivery. Journal of Extracellular Vesicles, 2021, 10, e12054.	5.5	43
44	Noninvasive imaging of infection after treatment with tumorâ€homing bacteria using Chemical Exchange Saturation Transfer (CEST) MRI. Magnetic Resonance in Medicine, 2013, 70, 1690-1698.	1.9	39
45	Onâ€resonance variable delay multipulse scheme for imaging of fastâ€exchanging protons and semisolid macromolecules. Magnetic Resonance in Medicine, 2017, 77, 730-739.	1.9	35
46	Optimization of osmotic blood-brain barrier opening to enable intravital microscopy studies on drug delivery in mouse cortex. Journal of Controlled Release, 2020, 317, 312-321.	4.8	35
47	Non-invasive temperature mapping using temperature-responsive water saturation shift referencing (T-WASSR) MRI. NMR in Biomedicine, 2014, 27, 320-331.	1.6	33
48	Characterization of tumor vascular permeability using natural dextrans and CEST MRI. Magnetic Resonance in Medicine, 2018, 79, 1001-1009.	1.9	33
49	Photophysical and photochemical processes of riboflavin (vitamin B2) by means of the transient absorption spectra in aqueous solution. Science in China Series B: Chemistry, 2001, 44, 39-48.	0.8	30
50	Highâ€resolution creatine mapping of mouse brain at 11.7 T using nonâ€steadyâ€state chemical exchange saturation transfer. NMR in Biomedicine, 2019, 32, e4168.	1.6	29
51	Real-Time MRI Guidance for Reproducible Hyperosmolar Opening of the Blood-Brain Barrier in Mice. Frontiers in Neurology, 2018, 9, 921.	1.1	28
52	CEST MRI of sepsisâ€induced acute kidney injury. NMR in Biomedicine, 2018, 31, e3942.	1.6	28
53	Detection and Quantification of Hydrogen Peroxide in Aqueous Solutions Using Chemical Exchange Saturation Transfer. Analytical Chemistry, 2017, 89, 7758-7764.	3.2	27
54	Separation and Quantitation of Short-Chain Coenzyme A's in Biological Samples by Capillary Electrophoresis. Analytical Chemistry, 2003, 75, 78-82.	3.2	26

#	Article	IF	CITATIONS
55	GlucoCEST imaging with onâ€resonance variable delay multiple pulse (onVDMP) MRI. Magnetic Resonance in Medicine, 2019, 81, 47-56.	1.9	26
56	Hyperosmolar blood–brain barrier opening using intra-arterial injection of hyperosmotic mannitol in mice under real-time MRI guidance. Nature Protocols, 2022, 17, 76-94.	5.5	26
57	MRI detection of bacterial brain abscesses and monitoring of antibiotic treatment using bacCEST. Magnetic Resonance in Medicine, 2018, 80, 662-671.	1.9	25
58	Extradomain-B Fibronectin-Targeted Dextran-Based Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Probe for Detecting Pancreatic Cancer. Bioconjugate Chemistry, 2019, 30, 1425-1433.	1.8	25
59	CT and CEST MRI bimodal imaging of the intratumoral distribution of iodinated liposomes. Quantitative Imaging in Medicine and Surgery, 2019, 9, 1579-1591.	1.1	24
60	Reversible blood-brain barrier opening utilizing the membrane active peptide melittin in vitro and in vivo. Biomaterials, 2021, 275, 120942.	5.7	24
61	GlucoCEST magnetic resonance imaging inÂvivo may be diagnostic of acute renal allograft rejection. Kidney International, 2017, 92, 757-764.	2.6	21
62	Imaging the DNA Alkylator Melphalan by CEST MRI: An Advanced Approach to Theranostics. Molecular Pharmaceutics, 2016, 13, 3043-3053.	2.3	20
63	Nonâ€contrastâ€enhanced abdominal MRA at 3 T using velocityâ€selective pulse trains. Magnetic Resonance in Medicine, 2020, 84, 1173-1183.	1.9	19
64	Detection of dynamic substrate binding using MRI. Scientific Reports, 2017, 7, 10138.	1.6	18
65	CEST MRI monitoring of tumor response to vascular disrupting therapy using high molecular weight dextrans. Magnetic Resonance in Medicine, 2019, 82, 1471-1479.	1.9	18
66	Repurposing Clinical Agents for Chemical Exchange Saturation Transfer Magnetic Resonance Imaging: Current Status and Future Perspectives. Pharmaceuticals, 2021, 14, 11.	1.7	18
67	In vivo tracking of unlabelled mesenchymal stromal cells by mannose-weighted chemical exchange saturation transfer MRI. Nature Biomedical Engineering, 2022, 6, 658-666.	11.6	18
68	NOrmalized MAgnetization Ratio (NOMAR) filtering for creation of tissue selective contrast maps. Magnetic Resonance in Medicine, 2013, 69, 516-523.	1.9	16
69	Magnetization transfer contrast MRI for non-invasive assessment of innate and adaptive immune responses against alginate-encapsulated cells. Biomaterials, 2014, 35, 7811-7818.	5.7	16
70	Sugarâ€based biopolymers as novel imaging agents for molecular magnetic resonance imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1551.	3.3	15
71	Phenols as Diamagnetic <i>T</i> ₂ â€Exchange Magnetic Resonance Imaging Contrast Agents. Chemistry - A European Journal, 2018, 24, 1259-1263.	1.7	13
72	Detecting acid phosphatase enzymatic activity with phenol as a chemical exchange saturation transfer magnetic resonance imaging contrast agent (PhenolCEST MRI). Biosensors and Bioelectronics, 2019, 141, 111442.	5.3	13

#	Article	IF	CITATIONS
73	The effect of the mTOR inhibitor rapamycin on glucoCEST signal in a preclinical model of glioblastoma. Magnetic Resonance in Medicine, 2019, 81, 3798-3807.	1.9	13
74	Molecular imaging of deoxycytidine kinase activity using deoxycytidine-enhanced CEST MRI. Cancer Research, 2019, 79, canres.3565.2018.	0.4	12
75	CEST MRI Reporter Genes. Methods in Molecular Biology, 2011, 711, 271-280.	0.4	12
76	Deep learningâ€based classification of preclinical breast cancer tumor models using chemical exchange saturation transfer magnetic resonance imaging. NMR in Biomedicine, 2022, 35, e4626.	1.6	12
77	CEST MRI trackable nanoparticle drug delivery systems. Biomedical Materials (Bristol), 2021, 16, 024103.	1.7	10
78	Frondoside A Inhibits an MYC-Driven Medulloblastoma Model Derived from Human-Induced Pluripotent Stem Cells. Molecular Cancer Therapeutics, 2021, 20, 1199-1209.	1.9	10
79	A snapshot of the vast array of diamagnetic CEST MRI contrast agents. NMR in Biomedicine, 2023, 36, e4715.	1.6	10
80	Deuterium oxide as a contrast medium for real-time MRI-guided endovascular neurointervention. Theranostics, 2021, 11, 6240-6250.	4.6	7
81	Dynamic contrastâ€enhanced CEST MRI using a low molecular weight dextran. NMR in Biomedicine, 2021, , e4649.	1.6	7
82	Triazoles as <i>T</i> ₂ â€Exchange Magnetic Resonance Imaging Contrast Agents for the Detection of Nitrilase Activity. Chemistry - A European Journal, 2018, 24, 15013-15018.	1.7	6
83	MRI of CEST-Based Reporter Gene. Methods in Molecular Biology, 2011, 771, 733-746.	0.4	6
84	Quantitative cerebrovascular reactivity <scp>MRI</scp> in mice using acetazolamide challenge. Magnetic Resonance in Medicine, 2022, 88, 2233-2241.	1.9	5
85	Radiosensitization mechanism of riboflavin in vitro. Science in China Series C: Life Sciences, 2002, 45, 344.	1.3	4
86	N â€Aryl Amides as Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agents. Chemistry - A European Journal, 2020, 26, 11705-11709.	1.7	4
87	Neutrophil depletion enhanced the <i>Clostridium novyi</i> -NT therapy in mouse and rabbit tumor models. Neuro-Oncology Advances, 2022, 4, vdab184.	0.4	3
88	Carbon Dots as a New Class of Diamagnetic Chemical Exchange Saturation Transfer (diaCEST) MRI Contrast Agents. Angewandte Chemie, 2019, 131, 9976-9980.	1.6	1
89	Cancer Therapy: Vaginal Delivery of Paclitaxel via Nanoparticles with Nonâ€Mucoadhesive Surfaces Suppresses Cervical Tumor Growth (Adv. Healthcare Mater. 7/2014). Advanced Healthcare Materials, 2014, 3, 1120-1120.	3.9	0
90	Innenrücktitelbild: Carbon Dots as a New Class of Diamagnetic Chemical Exchange Saturation Transfer (diaCEST) MRI Contrast Agents (Angew. Chem. 29/2019). Angewandte Chemie, 2019, 131, 10113-10113.	1.6	0

#	Article	IF	CITATIONS
91	CEST (Chemical Exchange Saturation Transfer) MR Molecular Imaging. , 2021, , 325-341.		0
92	Chapter 6 General Theory of CEST Image Acquisition and Post-Processing. , 2017, , 55-96.		0