List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6313762/publications.pdf Version: 2024-02-01

80 papers	13,612 citations	57631 44 h-index	62479 80 g-index
81	81	81	17292
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nitrogen-Doped Graphene Quantum Dots with Oxygen-Rich Functional Groups. Journal of the American Chemical Society, 2012, 134, 15-18.	6.6	1,832
2	An Electrochemical Avenue to Green‣uminescent Graphene Quantum Dots as Potential Electronâ€Acceptors for Photovoltaics. Advanced Materials, 2011, 23, 776-780.	11.1	1,466
3	Allâ€Graphene Coreâ€Sheath Microfibers for Allâ€Solidâ€State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles. Advanced Materials, 2013, 25, 2326-2331.	11.1	1,007
4	Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water. ACS Nano, 2017, 11, 5087-5093.	7.3	871
5	Atomically Thin Mesoporous Nanomesh of Graphitic C ₃ N ₄ for High-Efficiency Photocatalytic Hydrogen Evolution. ACS Nano, 2016, 10, 2745-2751.	7.3	866
6	Highly Compressionâ€Tolerant Supercapacitor Based on Polypyrroleâ€mediated Graphene Foam Electrodes. Advanced Materials, 2013, 25, 591-595.	11.1	745
7	A Versatile, Ultralight, Nitrogenâ€Đoped Graphene Framework. Angewandte Chemie - International Edition, 2012, 51, 11371-11375.	7.2	731
8	Graphitic Carbon Nitride Nanoribbons: Grapheneâ€Assisted Formation and Synergic Function for Highly Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2014, 53, 13934-13939.	7.2	470
9	A Graphitic ₃ N ₄ "Seaweed―Architecture for Enhanced Hydrogen Evolution. Angewandte Chemie - International Edition, 2015, 54, 11433-11437.	7.2	433
10	Graphene Fibers with Predetermined Deformation as Moistureâ€Triggered Actuators and Robots. Angewandte Chemie - International Edition, 2013, 52, 10482-10486.	7.2	294
11	A capacity recoverable zinc-ion micro-supercapacitor. Energy and Environmental Science, 2018, 11, 3367-3374.	15.6	263
12	Functional graphene nanomesh foam. Energy and Environmental Science, 2014, 7, 1913.	15.6	206
13	Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors. Journal of Materials Chemistry A, 2014, 2, 12355.	5.2	199
14	Molybdenum carbide nanocrystal embedded N-doped carbon nanotubes as electrocatalysts for hydrogen generation. Journal of Materials Chemistry A, 2015, 3, 5783-5788.	5.2	198
15	Colloidal Synthesis and Optical Properties of Allâ€Inorganic Lowâ€Dimensional Cesium Copper Halide Nanocrystals. Angewandte Chemie - International Edition, 2019, 58, 16087-16091.	7.2	192
16	Graphene Platforms for Smart Energy Generation and Storage. Joule, 2018, 2, 245-268.	11.7	168
17	Spontaneous Reduction and Assembly of Graphene oxide into Three-Dimensional Graphene Network on Arbitrary Conductive Substrates. Scientific Reports, 2013, 3, 2065.	1.6	157
18	Tuning the Anode–Electrolyte Interface Chemistry for Garnetâ€Based Solidâ€State Li Metal Batteries. Advanced Materials, 2020, 32, e2000030.	11.1	156

#	Article	IF	CITATIONS
19	Meshâ€onâ€Mesh Graphitic ₃ N ₄ @Graphene for Highly Efficient Hydrogen Evolution. Advanced Functional Materials, 2017, 27, 1606352.	7.8	145
20	Hierarchical nanosheet-based CoMoO ₄ –NiMoO ₄ nanotubes for applications in asymmetric supercapacitors and the oxygen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 22750-22758.	5.2	140
21	Large-Scale Spinning Assembly of Neat, Morphology-Defined, Graphene-Based Hollow Fibers. ACS Nano, 2013, 7, 2406-2412.	7.3	137
22	Spontaneous, Straightforward Fabrication of Partially Reduced Graphene Oxide–Polypyrrole Composite Films for Versatile Actuators. ACS Nano, 2016, 10, 4735-4741.	7.3	120
23	Graphene Oxide Nanoribbon Assembly toward Moistureâ€Powered Information Storage. Advanced Materials, 2017, 29, 1604972.	11.1	118
24	Stretchable supercapacitor at â^'30 °C. Energy and Environmental Science, 2021, 14, 3075-3085.	15.6	114
25	Graphene Microtubings: Controlled Fabrication and Site-Specific Functionalization. Nano Letters, 2012, 12, 5879-5884.	4.5	111
26	Large-Scale Production of Flexible, High-Voltage Hydroelectric Films Based on Solid Oxides. ACS Applied Materials & Interfaces, 2019, 11, 30927-30935.	4.0	98
27	A seamlessly integrated device of micro-supercapacitor and wireless charging with ultrahigh energy density and capacitance. Nature Communications, 2021, 12, 2647.	5.8	97
28	Hybrid Energy Storage Device: Combination of Zinc-Ion Supercapacitor and Zinc–Air Battery in Mild Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 7239-7248.	4.0	88
29	Three-dimensional graphene–polypyrrole hybrid electrochemical actuator. Nanoscale, 2012, 4, 7563.	2.8	86
30	Cellulose Fiber-Based Hierarchical Porous Bismuth Telluride for High-Performance Flexible and Tailorable Thermoelectrics. ACS Applied Materials & Interfaces, 2018, 10, 1743-1751.	4.0	85
31	Solution-Processed Ultraelastic and Strong Air-Bubbled Graphene Foams. Small, 2016, 12, 3229-3234.	5.2	83
32	Wearable fiberform hygroelectric generator. Nano Energy, 2018, 53, 698-705.	8.2	80
33	A General and Extremely Simple Remote Approach toward Graphene Bulks with In Situ Multifunctionalization. Advanced Materials, 2016, 28, 3305-3312.	11.1	79
34	Integrated graphene systems by laser irradiation for advanced devices. Nano Today, 2017, 12, 14-30.	6.2	78
35	A Type of 1 nm Molybdenum Carbide Confined within Carbon Nanomesh as Highly Efficient Bifunctional Electrocatalyst. Advanced Functional Materials, 2018, 28, 1705967.	7.8	78
36	All-pH-Tolerant In-Plane Heterostructures for Efficient Hydrogen Evolution Reaction. ACS Nano, 2021, 15, 11417-11427.	7.3	77

#	Article	IF	CITATIONS
37	Versatile Graphene Oxide Puttyâ€Like Material. Advanced Materials, 2016, 28, 10287-10292.	11.1	68
38	Laserâ€Assisted Largeâ€Scale Fabrication of Allâ€Solidâ€State Asymmetrical Microâ€Supercapacitor Array. Small, 2018, 14, e1801809.	5.2	68
39	Large-Scale Spinning Approach to Engineering Knittable Hydrogel Fiber for Soft Robots. ACS Nano, 2020, 14, 14929-14938.	7.3	64
40	Direct spinning of fiber supercapacitor. Nanoscale, 2016, 8, 12113-12117.	2.8	55
41	Laser-Assisted Multiscale Fabrication of Configuration-Editable Supercapacitors with High Energy Density. ACS Nano, 2019, 13, 7463-7470.	7.3	54
42	A self-healing zinc ion battery under -20 °C. Energy Storage Materials, 2022, 44, 517-526.	9.5	53
43	A Flexible Aqueous Zinc–lodine Microbattery with Unprecedented Energy Density. Advanced Materials, 2022, 34, e2109450.	11.1	49
44	Flexible and integrated supercapacitor with tunable energy storage. Nanoscale, 2017, 9, 12324-12329.	2.8	48
45	Interconnected Molybdenum Carbide-Based Nanoribbons for Highly Efficient and Ultrastable Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 24608-24615.	4.0	44
46	Recent advances in highly integrated energy conversion and storage system. SusMat, 2022, 2, 142-160.	7.8	44
47	Compact Assembly and Programmable Integration of Supercapacitors. Advanced Materials, 2020, 32, e1907005.	11.1	42
48	A directly swallowable and ingestible micro-supercapacitor. Journal of Materials Chemistry A, 2020, 8, 4055-4061.	5.2	39
49	Versatile origami micro-supercapacitors array as a wind energy harvester. Journal of Materials Chemistry A, 2018, 6, 19750-19756.	5.2	37
50	Metal/graphene oxide batteries. Carbon, 2017, 125, 299-307.	5.4	36
51	Laser fabrication of functional micro-supercapacitors. Journal of Energy Chemistry, 2021, 59, 642-665.	7.1	35
52	Polymer/Graphene Hybrids for Advanced Energyâ€Conversion and ‣torage Materials. Chemistry - an Asian Journal, 2016, 11, 1151-1168.	1.7	31
53	Controllable localization of carbon nanotubes on the holey edge of graphene: an efficient oxygen reduction electrocatalyst for Zn–air batteries. Journal of Materials Chemistry A, 2016, 4, 18240-18247.	5.2	31
54	Graphene decorated with bimodal size of carbon polyhedrons for enhanced lithium storage. Carbon, 2016, 106, 9-19.	5.4	29

#	Article	IF	CITATIONS
55	Grain Boundary Design of Solid Electrolyte Actualizing Stable Allâ€Solidâ€State Sodium Batteries. Small, 2021, 17, e2103819.	5.2	29
56	Coupling interconnected MoO ₃ /WO ₃ nanosheets with a graphene framework as a highly efficient anode for lithium-ion batteries. Nanoscale, 2018, 10, 396-402.	2.8	28
57	An Aqueous Antiâ€Freezing and Heatâ€Tolerant Symmetric Microsupercapacitor with 2.3ÂV Output Voltage. Advanced Energy Materials, 2021, 11, 2101523.	10.2	28
58	A 2D free-standing film-inspired electrocatalyst for highly efficient hydrogen production. Journal of Materials Chemistry A, 2017, 5, 12027-12033.	5.2	27
59	Enabling fast-charging selenium-based aqueous batteries via conversion reaction with copper ions. Nature Communications, 2022, 13, 1863.	5.8	27
60	A versatile, superelastic polystyrene/graphene capsule-like framework. Journal of Materials Chemistry A, 2016, 4, 10118-10123.	5.2	26
61	A Cascade Battery: Coupling Two Sequential Electrochemical Reactions in a Single Battery. Advanced Materials, 2021, 33, e2105480.	11.1	25
62	The Emerging of Aqueous Zincâ€Based Dual Electrolytic Batteries. Small, 2021, 17, e2008043.	5.2	23
63	Graphene Materials for Miniaturized Energy Harvest and Storage Devices. Small Structures, 2022, 3, .	6.9	23
64	Highly crumpled nanocarbons as efficient metal-free electrocatalysts for zinc–air batteries. Nanoscale, 2018, 10, 15706-15713.	2.8	21
65	Regulation of 2D Graphene Materials for Electrocatalysis. Chemistry - an Asian Journal, 2020, 15, 2271-2281.	1.7	20
66	Recent progress in graphene-based wearable piezoresistive sensors: From 1D to 3D device geometries. Nano Materials Science, 2023, 5, 247-264.	3.9	20
67	Fast constructing polarity-switchable zinc-bromine microbatteries with high areal energy density. Science Advances, 2022, 8, .	4.7	19
68	An efficient ultra-thin chain-structured copper cobalt oxide/sulfide composite catalyst for electrochemical hydrogen generation. RSC Advances, 2016, 6, 43185-43190.	1.7	18
69	Pure Aqueous Planar Microsupercapacitors with Ultrahigh Energy Density under Wide Temperature Ranges. Advanced Functional Materials, 2022, 32, .	7.8	17
70	2D Grapheneâ€Based Macroscopic Assemblies for Microâ€Supercapacitors. ChemSusChem, 2020, 13, 1255-1274.	3.6	16
71	Laserâ€Based Growth and Treatment of Graphene for Advanced Photo―and Electroâ€Related Device Applications. Advanced Functional Materials, 2022, 32, .	7.8	16
72	In Situ Fabrication of Lead-Free Cs ₃ Cu ₂ I ₅ Nanostructures Embedded in Poly(Vinylidene Fluoride) Electrospun Fibers for Polarized Emission. ACS Applied Nano Materials, 2022, 5, 508-516.	2.4	14

YANG ZHAO

#	Article	IF	CITATIONS
73	A versatile, heat-resisting, electrocatalytic active graphene framework by in-situ formation of boron nitride quantum dots. Carbon, 2022, 192, 123-132.	5.4	11
74	Bottom-up scalable temporally-shaped femtosecond laser deposition of hierarchical porous carbon for ultrahigh-rate micro-supercapacitor. Science China Materials, 2022, 65, 2412-2420.	3.5	11
75	Detection of epinephrine and metanephrine at a nitrogen doped three-dimensional porous graphene modified electrode. Analytical Methods, 2015, 7, 10394-10402.	1.3	9
76	A facile laser assisted paste-tear approach to large area, flexible and wearable in-plane micro-supercapacitors. Journal of Power Sources, 2022, 532, 231346.	4.0	6
77	Highly defective, doping-free graphene framework: A rapid one-step formation avenue. Journal of Power Sources, 2021, 497, 229881.	4.0	5
78	Binary active sites of nickel–iron alloy bonded in nitrogen-doped carbon nanocage for robust durability and low polarization zinc-air batteries. Journal of Power Sources, 2022, 538, 231563.	4.0	5
79	Research on Modeling and Realization of Processing Action for Cloud Manufacturing Mode. Key Engineering Materials, 2011, 486, 111-114.	0.4	2
80	Study on the Manufacturing Service Trading Platform Based on Processing Behavior. Key Engineering Materials, 2013, 579-580, 113-121.	0.4	0