Haidar Taofeeq

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6313547/publications.pdf

Version: 2024-02-01

1163117 1125743 14 153 8 13 citations h-index g-index papers 14 14 14 114 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Modelling and validation of a gasâ \in solid fluidized bed using advanced measurement techniques. Canadian Journal of Chemical Engineering, 2022, 100, .	1.7	5
2	Flow Regimes in Gasâ€Solid Fluidized Beds via Microâ€Foil Heat Flux Sensor. Chemical Engineering and Technology, 2022, 45, 220-229.	1.5	1
3	Comparison of the radial profiles of particles velocity between invasive and non-invasive measurement techniques. Flow Measurement and Instrumentation, 2022, 85, 102169.	2.0	2
4	Investigation of the effect of vertical immersed tube diameter on heat transfer in a gas-solid fluidized bed. International Journal of Thermal Sciences, 2019, 135, 546-558.	4.9	14
5	Heat transfer and hydrodynamics in a gas-solid fluidized bed with vertical immersed internals. International Journal of Heat and Mass Transfer, 2018, 122, 229-251.	4.8	34
6	Advance optical fiber probe for simultaneous measurements of solids holdup and particles velocity using simple calibration methods for gas-solid fluidization systems. Flow Measurement and Instrumentation, 2018, 63, 18-32.	2.0	15
7	Effect of vertical internals on the pressure drop in a gasâ€solid fluidized bed. Canadian Journal of Chemical Engineering, 2018, 96, 2185-2205.	1.7	6
8	The impact of vertical internals array on the key hydrodynamic parameters in a gas-solid fluidized bed using an advance optical fiber probe. Advanced Powder Technology, 2018, 29, 2548-2567.	4.1	20
9	Flow regimes in gas–solid fluidized bed with vertical internals. Chemical Engineering Research and Design, 2018, 138, 87-104.	5.6	15
10	Comparison between the new mechanistic and the chaos scale-up methods for gas-solid fluidized beds. Chinese Journal of Chemical Engineering, 2018, 26, 1401-1411.	3.5	9
11	Flow regime identification in spouted beds using gamma-ray densitometry. Flow Measurement and Instrumentation, 2017, 55, 67-72.	2.0	4
12	Evaluation of the dimensionless groups based scale-up of gas–solid spouted beds. International Journal of Multiphase Flow, 2017, 94, 209-218.	3.4	12
13	Prediction of spout diameter in gasâ€solid spouted beds using factorial design of experiments approach with the aid of advanced optical fibre probe. Canadian Journal of Chemical Engineering, 2017, 95, 1463-1470.	1.7	5
14	A new mechanistic scale-up methodology for gas-solid spouted beds. Chemical Engineering and Processing: Process Intensification, 2016, 110, 146-159.	3.6	11