
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6313510/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenomic and Transcriptomic Prioritization of Candidate Obesity-Risk Regulatory GWAS SNPs. International Journal of Molecular Sciences, 2022, 23, 1271.	1.8	5
2	Risks and rewards of big-data in epigenomics research: an interview with Melanie Ehrlich. Epigenomics, 2022, 14, 351-358.	1.0	3
3	Epigenetics of Mitochondria-Associated Genes in Striated Muscle. Epigenomes, 2022, 6, 1.	0.8	3
4	Epigenetics and expression of key genes associated with cardiac fibrosis: <i>NLRP3, MMP2, MMP9, CCN2/CTGF</i> and <i>AGT</i> . Epigenomics, 2021, 13, 219-234.	1.0	16
5	Prioritization of Osteoporosisâ€Associated Genomeâ€wide Association Study (<scp>GWAS)</scp> Singleâ€Nucleotide Polymorphisms (<scp>SNPs)</scp> Using Epigenomics and Transcriptomics. JBMR Plus, 2021, 5, e10481.	1.3	14
6	Epigenetics of Muscle- and Brain-Specific Expression of KLHL Family Genes. International Journal of Molecular Sciences, 2020, 21, 8394.	1.8	14
7	Epigenetics of Skeletal Muscle-Associated Genes in the ASB, LRRC, TMEM, and OSBPL Gene Families. Epigenomes, 2020, 4, 1.	0.8	23
8	Osteoporosis- and obesity-risk interrelationships: an epigenetic analysis of GWAS-derived SNPs at the developmental gene <i>TBX15</i> . Epigenetics, 2020, 15, 728-749.	1.3	11
9	DNA hypermethylation in disease: mechanisms and clinical relevance. Epigenetics, 2019, 14, 1141-1163.	1.3	221
10	Tissue-specific epigenetics of atherosclerosis-related <i>ANGPT</i> and <i>ANGPTL</i> genes. Epigenomics, 2019, 11, 169-186.	1.0	30
11	Data showing atherosclerosis-associated differentially methylated regions are often at enhancers. Data in Brief, 2019, 23, 103812.	0.5	9
12	Atherosclerosis-associated differentially methylated regions can reflect the disease phenotype and are often at enhancers. Atherosclerosis, 2019, 280, 183-191.	0.4	29
13	Developmentally linked human DNA hypermethylation is associated with down-modulation, repression, and upregulation of transcription. Epigenetics, 2018, 13, 275-289.	1.3	31
14	The Sequence of Two Bacteriophages with Hypermodified Bases Reveals Novel Phage-Host Interactions. Viruses, 2018, 10, 217.	1.5	5
15	Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression. Epigenetics, 2017, 12, 123-138.	1.3	61
16	Incomplete MyoD-induced transdifferentiation is associated with chromatin remodeling deficiencies. Nucleic Acids Research, 2017, 45, 11684-11699.	6.5	27
17	Epigenetics of the myotonic dystrophy-associated <i>DMPK</i> gene neighborhood. Epigenomics, 2016, 8, 13-31.	1.0	22
18	DNA Hypomethylation in Intragenic and Intergenic Enhancer Chromatin of Muscle-Specific Genes Usually Correlates with their Expression. Yale Journal of Biology and Medicine, 2016, 89, 441-455.	0.2	22

#	Article	IF	CITATIONS
19	Tissue-specific epigenetics in gene neighborhoods: myogenic transcription factor genes. Human Molecular Genetics, 2015, 24, 4660-4673.	1.4	21
20	Exploring DNA methylation changes in promoter, intragenic, and intergenic regions as early and late events in breast cancer formation. BMC Cancer, 2015, 15, 816.	1.1	86
21	Myogenic Differential Methylation: Diverse Associations with Chromatin Structure. Biology, 2014, 3, 426-451.	1.3	15
22	Notch signaling genes. Epigenetics, 2014, 9, 842-850.	1.3	49
23	DNA cytosine methylation and hydroxymethylation at the borders. Epigenomics, 2014, 6, 563-566.	1.0	38
24	DNA methylation and differentiation: HOX genes in muscle cells. Epigenetics and Chromatin, 2013, 6, 25.	1.8	49
25	DNA methylation and differentiation: silencing, upregulation and modulation of gene expression. Epigenomics, 2013, 5, 553-568.	1.0	176
26	DNA Hypomethylation and Hemimethylation in Cancer. Advances in Experimental Medicine and Biology, 2013, 754, 31-56.	0.8	126
27	Early de novo DNA methylation and prolonged demethylation in the muscle lineage. Epigenetics, 2013, 8, 317-332.	1.3	85
28	Modeling, simulation and analysis of methylation profiles from reduced representation bisulfite sequencing experiments. Statistical Applications in Genetics and Molecular Biology, 2013, 12, 723-42.	0.2	22
29	Deciphering transcription dysregulation in FSH muscular dystrophy. Journal of Human Genetics, 2012, 57, 477-484.	1.1	5
30	Diagnosis by sequencing: correction of misdiagnosis from FSHD2 to LGMD2A by whole-exome analysis. European Journal of Human Genetics, 2012, 20, 999-1003.	1.4	32
31	DNA ploidy, nuclear size, proliferation index and DNA-hypomethylation in ovarian cancer. Gynecologic Oncology, 2011, 121, 24-31.	0.6	49
32	Gene expression during normal and FSHD myogenesis. BMC Medical Genomics, 2011, 4, 67.	0.7	81
33	DNA Replication Timing Is Maintained Genome-Wide in Primary Human Myoblasts Independent of D4Z4 Contraction in FSH Muscular Dystrophy. PLoS ONE, 2011, 6, e27413.	1.1	21
34	Analysis of allele-specific RNA transcription in FSHD by RNA-DNA FISH in single myonuclei. European Journal of Human Genetics, 2010, 18, 448-456.	1.4	34
35	Hemimethylation footprints of DNA demethylation in cancer. Epigenetics, 2009, 4, 165-175.	1.3	32
36	Modeling Dependence in Methylation Patterns with Application to Ovarian Carcinomas. Statistical Applications in Genetics and Molecular Biology, 2009, 8, 1-27.	0.2	12

#	Article	IF	CITATIONS
37	DNasel hypersensitivity at gene-poor, FSH dystrophy-linked 4q35.2. Nucleic Acids Research, 2009, 37, 7381-7393.	6.5	15
38	DNA hypomethylation in cancer cells. Epigenomics, 2009, 1, 239-259.	1.0	837
39	Highâ€resolution analysis of DNaselâ€hypersensitive sites in a muscular dystrophyâ€linked subtelomeric region of 4q. FASEB Journal, 2009, 23, 487.1.	0.2	0
40	ICF, an immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies, and gene dysregulation. Autoimmunity, 2008, 41, 253-271.	1.2	130
41	Epigenetics of a tandem DNA repeat: chromatin DNasel sensitivity and opposite methylation changes in cancers. Nucleic Acids Research, 2008, 36, 2196-2207.	6.5	51
42	Cancer-Linked DNA Hypermethylation and Hypomethylation. , 2008, , 235-252.		0
43	RNAPol-ChIP analysis of transcription from FSHD-linked tandem repeats and satellite DNA. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 29-40.	2.4	62
44	Hybridization analysis of D4Z4 repeat arrays linked to FSHD. Chromosoma, 2007, 116, 107-116.	1.0	25
45	Immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF). Orphanet Journal of Rare Diseases, 2006, 1, 2.	1.2	109
46	Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors. Oncogene, 2006, 25, 2636-2645.	2.6	129
47	Frequent DNA hypomethylation of human juxtacentromericBAGE loci in cancer. Genes Chromosomes and Cancer, 2005, 43, 11-24.	1.5	44
48	Interphase chromosomal abnormalities and mitotic missegregation of hypomethylated sequences in ICF syndrome cells. Chromosoma, 2005, 114, 118-126.	1.0	49
49	The Controversial Denouement of Vertebrate DNA Methylation Research. Biochemistry (Moscow), 2005, 70, 568-575.	0.7	26
50	DNA Hypo- vs. Hypermethylation in Cancer. , 2005, , 31-41.		3
51	Both Hypomethylation and Hypermethylation in a 0.2-kb Region of a DNA Repeat in Cancer. Molecular Cancer Research, 2005, 3, 617-626.	1.5	40
52	A DNA repeat, NBL2, is hypermethylated in some cancers but hypomethylated in others. Cancer Biology and Therapy, 2005, 4, 446-454.	1.5	40
53	Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Research, 2005, 33, 6823-6836.	6.5	636

54 DNA Methylation and Cancer-associated Genetic Instability. , 2005, 570, 363-392.

23

#	Article	IF	CITATIONS
55	DNA hypomethylation is prevalent even in low-grade breast cancers. Cancer Biology and Therapy, 2004, 3, 1225-1231.	1.5	117
56	DNA Hypomethylation and Ovarian Cancer Biology. Cancer Research, 2004, 64, 4472-4480.	0.4	221
57	Cytogenetic and immuno-FISH analysis of the 4q subtelomeric region, which is associated with facioscapulohumeral muscular dystrophy. Chromosoma, 2004, 112, 350-359.	1.0	36
58	Histone modification in constitutive heterochromatin versus unexpressed euchromatin in human cells. Journal of Cellular Biochemistry, 2004, 93, 286-300.	1.2	22
59	Satellite DNA hypomethylation in karyotyped Wilms tumors. Cancer Genetics and Cytogenetics, 2003, 141, 97-105.	1.0	81
60	Expression of various genes is controlled by DNA methylation during mammalian development. Journal of Cellular Biochemistry, 2003, 88, 899-910.	1.2	204
61	The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clinical Immunology, 2003, 109, 17-28.	1.4	179
62	Testing the position-effect variegation hypothesis for facioscapulohumeral muscular dystrophy by analysis of histone modification and gene expression in subtelomeric 4q. Human Molecular Genetics, 2003, 12, 2909-2921.	1.4	138
63	DNA Hypomethylation, Cancer, the Immunodeficiency, Centromeric Region Instability, Facial Anomalies Syndrome and Chromosomal Rearrangements. Journal of Nutrition, 2002, 132, 2424S-2429S.	1.3	113
64	DNA methylation in cancer: too much, but also too little. Oncogene, 2002, 21, 5400-5413.	2.6	1,390
65	Hypomethylation and hypermethylation of DNA in Wilms tumors. Oncogene, 2002, 21, 6694-6702.	2.6	165
66	Methylation of the FSHD Syndrome-Linked Subtelomeric Repeat in Normal and FSHD Cell Cultures and Tissues. Molecular Genetics and Metabolism, 2001, 74, 322-331.	0.5	31
67	DNA methyltransferase 3B mutations linked to the ICF syndrome cause dysregulation of lymphogenesis genes. Human Molecular Genetics, 2001, 10, 2917-2931.	1.4	108
68	Hypersensitivity to radiation-induced non-apoptotic and apoptotic death in cell lines from patients with the ICF chromosome instability syndrome. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 456, 1-15.	0.4	19
69	Whole-genome methylation scan in ICF syndrome: hypomethylation of non-satellite DNA repeats D4Z4 and NBL2. Human Molecular Genetics, 2000, 9, 597-604.	1.4	153
70	Demethylation and expression of methylated plasmid DNA stably transfected into HeLa cells. Nucleic Acids Research, 1999, 27, 2332-2338.	6.5	20
71	A Methylation-responsive MDBP/RFX Site Is in the First Exon of the Collagen α2(I) Promoter. Journal of Biological Chemistry, 1999, 274, 36649-36655.	1.6	37
72	Frequent Hypomethylation in Wilms Tumors of Pericentromeric DNA in Chromosomes 1 and 16. Cancer Genetics and Cytogenetics, 1999, 109, 34-39.	1.0	173

#	Article	IF	CITATIONS
73	Satellite DNA hypomethylation vs. overall genomic hypomethylation in ovarian epithelial tumors of different malignant potential. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1999, 423, 91-101.	0.4	136
74	Hypomethylation of pericentromeric DNA in breast adenocarcinomas. , 1998, 77, 833-838.		218
75	Hypomethylation of pericentromeric DNA in breast adenocarcinomas. , 1998, 77, 833.		3
76	DNA demethylation and pericentromeric rearrangements of chromosome 1. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1997, 379, 33-41.	0.4	161
77	Frequency ofBCL-2/JH translocations in peripheral blood of follicular lymphoma patients. , 1997, 55, 205-207.		1
78	Increasing binding of a transcription factor immediately downstream of the cap site of a cytomegalovirus gene represses expression. Nucleic Acids Research, 1995, 23, 3026-3033.	6.5	26
79	A mutation in the 5′ untranslated region of the human α-galactosidase A gene in high-activity variants inhibits specific protein binding. FEBS Letters, 1995, 371, 181-184.	1.3	9
80	Effect of DNA methylation on the binding of vertebrate and plant proteins to DNA. , 1993, 64, 145-168.		38
81	A broad bean cDNA clone encoding a DNA-binding protein resembling mammalian CREB in its sequence specificity and DNA methylation sensitivity. Gene, 1992, 117, 169-178.	1.0	29
82	DNA methylation inhibits propagation of tomato golden mosaic virus DNA in transfected protoplasts. Plant Molecular Biology, 1992, 18, 703-712.	2.0	77
83	Transfection of heteroduplexes containing uracil � guanine or thymine � guanine mispairs into plant cells. Plant Molecular Biology, 1992, 20, 123-131.	2.0	13
84	CpG methylation inhibits binding of several sequence-specific DNA-binding proteins from pea, wheat, soybean and cauliflower. Plant Molecular Biology, 1991, 17, 111-123.	2.0	118
85	Spontaneous deamination of cytosine and 5-methylcytosine residues in DNA and replacement of 5-methylcytosine residues with cytosine residues. Mutation Research - Reviews in Genetic Toxicology, 1990, 238, 277-286.	3.0	110
86	Binding sites in mammalian genes and viral gene regulatory regions recognized by methylated DNA-binding protein. Nucleic Acids Research, 1990, 18, 6253-6260.	6.5	60
87	Related sites in human and herpesvirus DNA recognized by methylated DNA-binding protein from human placenta. Nucleic Acids Research, 1989, 17, 1459-1474.	6.5	37
88	Methylated DNA-binding protein is present in various mammalian cell types. Nucleic Acids Research, 1988, 16, 8029-8044.	6.5	43
89	Hypermethylation of human DNA sequences in embryonal carcinoma cells and somatic tissues but not in sperm. Nucleic Acids Research, 1987, 15, 9429-9449.	6.5	45
90	A human DNA-binding protein is methylation-specific and sequence-specific. Nucleic Acids Research, 1986, 14, 1599-1614.	6.5	52

#	Article	IF	CITATIONS
91	DNA cytosine methylation and heat-induced deamination. Bioscience Reports, 1986, 6, 387-393.	1.1	166
92	Methylated DNA-binding protein from human placenta recognizes specific methylated sites on several prokaryotic DNAs. Nucleic Acids Research, 1986, 14, 9843-9860.	6.5	50
93	Effect of site-specific DNA methylation and mutagenesis on recognition by methylated DNA-binding protein from human placenta. Nucleic Acids Research, 1986, 14, 8387-8397.	6.5	42
94	The accessibility of 5-methylcytosine to specific antibodies in double-stranded DNA of Xanthomonas phage XP12. FEBS Journal, 1985, 152, 115-121.	0.2	18
95	DNA methylation in thermophilic bacteria: N4-methylcytosine, 5-methylcytosine, and N5methyladenine. Nucleic Acids Research, 1985, 13, 1399-1412.	6.5	143
96	Isolation of in Vitro Synthesized Covalently Closed Circular Double-Stranded DNA by Selective Denaturation and Filtration. Preparative Biochemistry and Biotechnology, 1984, 14, 485-497.	0.4	6
97	Quantitative reversed-phase high-performance liquid chromatography of major and modified nucleosides in dna. Journal of Chromatography A, 1984, 301, 199-219.	1.8	187
98	A protein from human placental nuclei binds preferentially to 5-methylcytosine-rich DNA. Nature, 1984, 308, 293-295.	13.7	102
99	Human placental DNA methyltransferase: DNA substrate and DNA binding specificity. Nucleic Acids Research, 1984, 12, 3473-3490.	6.5	38
100	Tissue-specific differences in DNA methylation in various mammals. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1983, 740, 212-219.	2.4	185
101	The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Research, 1983, 11, 6883-6894.	6.5	797
102	The 5-Methylcytosine content of highly repeated sequences in human DNA. Nucleic Acids Research, 1983, 11, 3087-3095.	6.5	133
103	Digestion of highly modified bacteriophage DNA by restriction endonucleases. Nucleic Acids Research, 1982, 10, 1579-1591.	6.5	125
104	Heat- and alkali-induced deamination of 5-methylcytosine and cytosine residues in DNA. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1982, 697, 371-377.	2.4	121
105	Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Research, 1982, 10, 2709-2721.	6.5	917
106	Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Research, 1980, 8, 4763-4776.	6.5	303
107	Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Research, 1980, 8, 4777-4790.	6.5	240
108	Unusual properties of the DNA from Xanthomonas phage XP-12 in which 5-methylcytosine completely replaces cytosine. Nucleic Acids and Protein Synthesis, 1975, 395, 109-119.	1.7	97

#	Article	IF	CITATIONS
109	EFFECT OF BASE SEQUENCE ON THE ULTRAVIOLET IRRADIATION PRODUCTS OF DOUBLE-STRANDED POLYNUCLEOTIDES CONTAINING BROMOURACIL AND ADENINE. Photochemistry and Photobiology, 1974, 20, 159-165.	1.3	9