
Mateus T Guerra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6313421/publications.pdf Version: 2024-02-01

MATELIS T CHEDDA

#	Article	IF	CITATIONS
1	Correlation Between Clinical and Pathological Findings of Liver Injury in 27 Patients With Lethal COVIDâ€19 Infections in Brazil. Hepatology Communications, 2022, 6, 270-280.	2.0	17
2	Neutrophils interact with cholangiocytes to cause cholestatic changes in alcoholic hepatitis. Gut, 2021, 70, gutjnl-2020-322540.	6.1	19
3	Type 3 Inositol 1,4,5â€Trisphosphate Receptor Is Increased and Enhances Malignant Properties in Cholangiocarcinoma. Hepatology, 2020, 71, 583-599.	3.6	45
4	Type 3 inositol 1,4,5-trisphosphate receptor: A calcium channel for all seasons. Cell Calcium, 2020, 85, 102132.	1.1	33
5	Inositol 1,4,5 trisphosphate receptors in secretory epithelial cells of the gastrointestinal tract. Current Opinion in Physiology, 2020, 17, 169-174.	0.9	2
6	Inositol 1,4,5-trisphosphate receptor type 3 plays a protective role in hepatocytes during hepatic ischemia-reperfusion injury. Cell Calcium, 2020, 91, 102264.	1.1	3
7	Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis. Nature, 2020, 579, 279-283.	13.7	110
8	Effects of Endotoxin on Type 3 Inositol 1,4,5â€īrisphosphate Receptor in Human Cholangiocytes. Hepatology, 2019, 69, 817-830.	3.6	28
9	Expression of the type 3 InsP ₃ receptor is a final common event in the development of hepatocellular carcinoma. Gut, 2019, 68, 1676-1687.	6.1	56
10	CELA2A mutations predispose to early-onset atherosclerosis and metabolic syndrome and affect plasma insulin and platelet activation. Nature Genetics, 2019, 51, 1233-1243.	9.4	23
11	Type 2 inositol trisphosphate receptor gene expression in hepatocytes is regulated by cyclic AMP. Biochemical and Biophysical Research Communications, 2017, 486, 659-664.	1.0	9
12	Hepatic inositol 1,4,5 trisphosphate receptor type 1 mediates fatty liver. Hepatology Communications, 2017, 1, 23-35.	2.0	56
13	Mitochondrial MIsCUes in liver regeneration. Hepatology, 2016, 64, 1797-1799.	3.6	0
14	Calcium signaling and secretion in cholangiocytes. Pancreatology, 2015, 15, S44-S48.	0.5	13
15	Post-translational Regulation of the Type III Inositol 1,4,5-Trisphosphate Receptor by miRNA-506. Journal of Biological Chemistry, 2015, 290, 184-196.	1.6	65
16	Nucleoplasmic calcium regulates cell proliferation through legumain. Journal of Hepatology, 2011, 55, 626-635.	1.8	50
17	Mitochondrial calcium regulates rat liver regeneration through the modulation of apoptosis. Hepatology, 2011, 54, 296-306.	3.6	53
18	Type 2 inositol 1,4,5-trisphosphate receptor modulates bile salt export pump activity in rat hepatocytes. Hepatology, 2011, 54, 1790-1799.	3.6	65

MATEUS T GUERRA

#	Article	IF	CITATIONS
19	Regulation of multidrug resistance-associated protein 2 by calcium signaling in mouse liver. Hepatology, 2010, 52, 327-337.	3.6	53
20	Nuclear Ca2+ regulates cardiomyocyte function. Cell Calcium, 2008, 44, 230-242.	1.1	71
21	The Spatial Distribution of Inositol 1,4,5-Trisphosphate Receptor Isoforms Shapes Ca2+ Waves. Journal of Biological Chemistry, 2007, 282, 10057-10067.	1.6	42
22	Lipid Rafts Establish Calcium Waves in Hepatocytes. Gastroenterology, 2007, 133, 256-267.	0.6	43
23	Calcium release from ryanodine receptors in the nucleoplasmic reticulum. Cell Calcium, 2006, 39, 65-73.	1.1	85
24	Protein 4.1N does not interact with the inositol 1,4,5-trisphosphate receptor in an epithelial cell line. Cell Calcium, 2005, 38, 469-480.	1.1	10
25	Endotoxin unmasks the role of gap junctions in the liver. Biochemical and Biophysical Research Communications, 2004, 322, 718-726.	1.0	19
26	Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nature Cell Biology, 2003, 5, 440-446.	4.6	343