Rebecca J Sheesley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6313313/publications.pdf Version: 2024-02-01

RERECCA | SHEESLEY

#	Article	IF	CITATIONS
1	Brown Clouds over South Asia: Biomass or Fossil Fuel Combustion?. Science, 2009, 323, 495-498.	12.6	606
2	Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	237
3	Source apportionment of fine organic aerosol in Mexico City during the MILAGRO experiment 2006. Atmospheric Chemistry and Physics, 2008, 8, 1249-1259.	4.9	215
4	Gaseous and Particulate Emissions from Prescribed Burning in Georgia. Environmental Science & Technology, 2005, 39, 9049-9056.	10.0	207
5	Speciation of ambient fine organic carbon particles and source apportionment of PM _{2.5} in Indian cities. Journal of Geophysical Research, 2007, 112, .	3.3	163
6	Primary and Secondary Contributions to Ambient PM in the Midwestern United States. Environmental Science & Technology, 2008, 42, 3303-3309.	10.0	140
7	¹³ C―and ¹⁴ Câ€based study of sources and atmospheric processing of waterâ€soluble organic carbon (WSOC) in South Asian aerosols. Journal of Geophysical Research D: Atmospheres, 2013, 118, 614-626.	3.3	138
8	Fine, ultrafine and nanoparticle trace element compositions near a major freeway with a high heavy-duty diesel fraction. Atmospheric Environment, 2007, 41, 5684-5696.	4.1	132
9	Trends in Secondary Organic Aerosol at a Remote Site in Michigan's Upper Peninsula. Environmental Science & Technology, 2004, 38, 6491-6500.	10.0	119
10	Investigating the chemical nature of humic-like substances (HULIS) in North American atmospheric aerosols by liquid chromatography tandem mass spectrometry. Atmospheric Environment, 2009, 43, 4205-4213.	4.1	112
11	Daily Variation in Chemical Characteristics of Urban Ultrafine Aerosols and Inference of Their Sources. Environmental Science & Technology, 2007, 41, 6000-6006.	10.0	106
12	Sensitivity of molecular marker-based CMB models to biomass burning source profiles. Atmospheric Environment, 2007, 41, 9050-9063.	4.1	99
13	Source apportionment of primary and secondary organic aerosols using positive matrix factorization (PMF) of molecular markers. Atmospheric Environment, 2009, 43, 5567-5574.	4.1	97
14	Roadside measurements of size-segregated particulate organic compounds near gasoline and diesel-dominated freeways in Los Angeles, CA. Atmospheric Environment, 2007, 41, 4653-4671.	4.1	90
15	Annual variability of ice-nucleating particle concentrations at different Arctic locations. Atmospheric Chemistry and Physics, 2019, 19, 5293-5311.	4.9	86
16	Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield. Journal of Geophysical Research, 2012, 117, .	3.3	72
17	Source apportionment of circum-Arctic atmospheric black carbon from isotopes and modeling. Science Advances, 2019, 5, eaau8052.	10.3	68
18	Selective pressurized liquid extraction as a sample-preparation technique for persistent organic pollutants and contaminants of emerging concern. TrAC - Trends in Analytical Chemistry, 2015, 68, 119-132.	11.4	62

REBECCA J SHEESLEY

#	Article	IF	CITATIONS
19	Characterization of Aircraft Deicer and Anti-Icer Components and Toxicity in Airport Snowbanks and Snowmelt Runoff. Environmental Science & Technology, 2006, 40, 3195-3202.	10.0	53
20	Evaluation of groundâ€based black carbon measurements by filterâ€based photometers at two Arctic sites. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3544-3572.	3.3	51
21	Personal exposures to traffic-related particle pollution among children with asthma in the South Bronx, NY. Journal of Exposure Science and Environmental Epidemiology, 2010, 20, 446-456.	3.9	48
22	Spatial and Temporal Distributions of Organophosphate Ester Concentrations from Atmospheric Particulate Matter Samples Collected across Houston, TX. Environmental Science & Technology, 2017, 51, 4239-4247.	10.0	47
23	Natural Abundance ¹³ C and ¹⁴ C Analysis of Water-Soluble Organic Carbon in Atmospheric Aerosols. Analytical Chemistry, 2010, 82, 7973-7978.	6.5	46
24	Source Contributions to Wintertime Elemental and Organic Carbon in the Western Arctic Based on Radiocarbon and Tracer Apportionment. Environmental Science & Technology, 2015, 49, 11631-11639.	10.0	46
25	Source apportionment of elevated wintertime PAHs by compound-specific radiocarbon analysis. Atmospheric Chemistry and Physics, 2009, 9, 3347-3356.	4.9	45
26	Yearâ€round radiocarbonâ€based source apportionment of carbonaceous aerosols at two background sites in South Asia. Journal of Geophysical Research, 2012, 117, .	3.3	43
27	Radiocarbon-based source apportionment of elemental carbon aerosols at two South Asian receptor observatories over a full annual cycle. Environmental Research Letters, 2015, 10, 064004.	5.2	42
28	Carbon isotopeâ€constrained seasonality of carbonaceous aerosol sources from an urban location (Kanpur) in the Indoâ€Gangetic Plain. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4903-4923.	3.3	42
29	Sensitivity of a molecular marker based positive matrix factorization model to the number of receptor observations. Atmospheric Environment, 2009, 43, 4951-4958.	4.1	40
30	Contributions of transported Prudhoe Bay oil field emissions to the aerosol population in UtqiaÄįvik, Alaska. Atmospheric Chemistry and Physics, 2017, 17, 10879-10892.	4.9	37
31	Urban Trees Are Sinks for Soot: Elemental Carbon Accumulation by Two Widespread Oak Species. Environmental Science & Technology, 2019, 53, 10092-10101.	10.0	31
32	Equal abundance of summertime natural and wintertime anthropogenic Arctic organic aerosols. Nature Geoscience, 2022, 15, 196-202.	12.9	31
33	Daily Variation in Particle-Phase Source Tracers in an Urban Atmosphere. Aerosol Science and Technology, 2007, 41, 981-993.	3.1	29
34	Pressurized liquid extraction technique for the analysis of pesticides, PCBs, PBDEs, OPEs, PAHs, alkanes, hopanes, and steranes in atmospheric particulate matter. Chemosphere, 2015, 137, 33-44.	8.2	28
35	Source characterization of organic aerosols using Monte Carlo source apportionment of PAHs at two South Asian receptor sites. Atmospheric Environment, 2011, 45, 3874-3881.	4.1	26
36	Dual carbon isotope characterization of total organic carbon in wintertime carbonaceous aerosols from northern India. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4797-4809.	3.3	26

REBECCA J SHEESLEY

#	Article	IF	CITATIONS
37	Temporal Trends in Motor Vehicle and Secondary Organic Tracers Using in Situ Methylation Thermal Desorption GCMS. Environmental Science & Technology, 2010, 44, 9398-9404.	10.0	22
38	Yearâ€round optical properties and source characterization of Arctic organic carbon aerosols on the North Slope Alaska. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9319-9331.	3.3	20
39	Contributions of resuspended soil and road dust to organic carbon in fine particulate matter in the Midwestern US. Atmospheric Environment, 2011, 45, 514-518.	4.1	19
40	TOXICITY OF AMBIENT ATMOSPHERIC PARTICULATE MATTER FROM THE LAKE MICHIGAN (USA) AIRSHED TO AQUATIC ORGANISMS. Environmental Toxicology and Chemistry, 2004, 23, 133.	4.3	18
41	Seasonal and Spatial Relationship of Chemistry and Toxicity in Atmospheric Particulate Matter Using Aquatic Bioassays. Environmental Science & Technology, 2005, 39, 999-1010.	10.0	18
42	Source apportionment of fine particulate matter organic carbon in Shenzhen, China by chemical mass balance and radiocarbon methods. Environmental Pollution, 2018, 240, 34-43.	7.5	18
43	14C-Based source assessment of soot aerosols in Stockholm and the Swedish EMEP-Aspvreten regional background site. Atmospheric Environment, 2011, 45, 215-222.	4.1	17
44	Assessment of diesel particulate matter exposure in the workplace: freight terminals. Journal of Environmental Monitoring, 2008, 10, 305.	2.1	16
45	Tracking personal exposure to particulate diesel exhaust in a diesel freight terminal using organic tracer analysis. Journal of Exposure Science and Environmental Epidemiology, 2009, 19, 172-186.	3.9	16
46	The impacts of regional shipping emissions on the chemical characteristics of coastal submicron aerosols near Houston, TX. Atmospheric Chemistry and Physics, 2018, 18, 14217-14241.	4.9	16
47	Composition and Sources of Particulate Matter Measured near Houston, TX: Anthropogenic-Biogenic Interactions. Atmosphere, 2016, 7, 73.	2.3	15
48	Urban impacts on regional carbonaceous aerosols: Case study in central Texas. Journal of the Air and Waste Management Association, 2014, 64, 917-926.	1.9	14
49	Longâ€Term Trends for Marine Sulfur Aerosol in the Alaskan Arctic and Relationships With Temperature. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033225.	3.3	13
50	Urban core-downwind differences and relationships related to ozone production in a major urban area in Texas. Atmospheric Environment, 2021, 262, 118624.	4.1	13
51	Biomass and fossil fuel combustion contributions to elemental carbon across the San Francisco Bay Area. Atmospheric Environment, 2018, 195, 229-242.	4.1	12
52	Development of an in situ derivatization technique for rapid analysis of levoglucosan and polar compounds in atmospheric organic aerosol. Atmospheric Environment, 2015, 123, 251-255.	4.1	11
53	Hydroxymethanesulfonate (HMS) Formation during Summertime Fog in an Arctic Oil Field. Environmental Science and Technology Letters, 2021, 8, 511-518.	8.7	9
54	Elucidating the present-day chemical composition, seasonality and source regions of climate-relevant aerosols across the Arctic land surface. Environmental Research Letters, 2022, 17, 034032.	5.2	9

REBECCA J SHEESLEY

#	Article	IF	CITATIONS
55	Diesel Soot and Amine-Containing Organic Sulfate Aerosols in an Arctic Oil Field. Environmental Science & Technology, 2020, 54, 92-101.	10.0	7
56	Qualitative and quantitative assessment of unresolved complex mixture in PM2.5 of Bakersfield, CA. Atmospheric Environment, 2014, 98, 368-375.	4.1	6
57	Diagnostic Air Quality Model Evaluation of Source-Specific Primary and Secondary Fine Particulate Carbon. Environmental Science & Technology, 2014, 48, 464-473.	10.0	6
58	Spatial and Temporal Distribution of Current-Use Pesticides in Atmospheric Particulate Matter in Houston, Texas. Bulletin of Environmental Contamination and Toxicology, 2016, 97, 786-792.	2.7	5
59	Fine and Coarse Carbonaceous Aerosol in Houston, TX, during DISCOVER-AQ. Atmosphere, 2020, 11, 482.	2.3	5
60	Apportioned primary and secondary organic aerosol during pollution events of DISCOVER-AQ Houston. Atmospheric Environment, 2021, 244, 117954.	4.1	5
61	Constraints on primary and secondary particulate carbon sources using chemical tracer and 14 C methods during CalNex-Bakersfield. Atmospheric Environment, 2017, 166, 204-214.	4.1	5
62	Traffic, transport, and vegetation drive VOC concentrations in a major urban area in Texas. Science of the Total Environment, 2022, 838, 155861.	8.0	5
63	Assessing the Impact of Industrial Source Emissions on Atmospheric Carbonaceous Aerosol Concentrations Using Routine Monitoring Networks. Journal of the Air and Waste Management Association, 2010, 60, 149-155.	1.9	3
64	Assessing the atmospheric fate of pesticides used to control mosquito populations in Houston, TX. Chemosphere, 2021, 275, 129951.	8.2	2
65	Contemporary sources dominate carbonaceous aerosol on the North Slope of Alaska. Science of the Total Environment, 2022, 831, 154641.	8.0	2