
Nikolaos G Frangogiannis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6313054/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The inflammatory response in myocardial infarction. Cardiovascular Research, 2002, 53, 31-47.	1.8	1,729
2	The Biological Basis for Cardiac Repair After Myocardial Infarction. Circulation Research, 2016, 119, 91-112.	2.0	1,408
3	The pathogenesis of cardiac fibrosis. Cellular and Molecular Life Sciences, 2014, 71, 549-574.	2.4	1,164
4	The inflammatory response in myocardial injury, repair, and remodelling. Nature Reviews Cardiology, 2014, 11, 255-265.	6.1	1,094
5	Regulation of the Inflammatory Response in Cardiac Repair. Circulation Research, 2012, 110, 159-173.	2.0	940
6	TGF-Î ² signaling in fibrosis. Growth Factors, 2011, 29, 196-202.	0.5	908
7	Transforming growth factor (TCF)-β signaling in cardiac remodeling. Journal of Molecular and Cellular Cardiology, 2011, 51, 600-606.	0.9	828
8	The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research, 2007, 74, 184-195.	1.8	800
9	CCL2/Monocyte Chemoattractant Protein-1 Regulates Inflammatory Responses Critical to Healing Myocardial Infarcts. Circulation Research, 2005, 96, 881-889.	2.0	628
10	The immune system and cardiac repair. Pharmacological Research, 2008, 58, 88-111.	3.1	560
11	Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Molecular Aspects of Medicine, 2019, 65, 70-99.	2.7	538
12	Transforming growth factor–β in tissue fibrosis. Journal of Experimental Medicine, 2020, 217, e20190103.	4.2	507
13	Resident Cardiac Mast Cells Degranulate and Release Preformed TNF-α, Initiating the Cytokine Cascade in Experimental Canine Myocardial Ischemia/Reperfusion. Circulation, 1998, 98, 699-710.	1.6	459
14	The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. Journal of Molecular and Cellular Cardiology, 2010, 48, 504-511.	0.9	450
15	Pathophysiology of Myocardial Infarction. , 2015, 5, 1841-1875.		437
16	Cardiac fibrosis. Cardiovascular Research, 2021, 117, 1450-1488.	1.8	419
17	Fibroblasts in myocardial infarction: A role in inflammation and repair. Journal of Molecular and Cellular Cardiology, 2014, 70, 74-82.	0.9	396
18	Guidelines for experimental models of myocardial ischemia and infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H812-H838.	1.5	372

#	Article	IF	CITATIONS
19	Matricellular Proteins in Cardiac Adaptation and Disease. Physiological Reviews, 2012, 92, 635-688.	13.1	368
20	The extracellular matrix in myocardial injury, repair, and remodeling. Journal of Clinical Investigation, 2017, 127, 1600-1612.	3.9	362
21	Of Mice and Dogs. American Journal of Pathology, 2004, 164, 665-677.	1.9	352
22	Diabetes-associated cardiac fibrosis: Cellular effectors, molecular mechanisms and therapeutic opportunities. Journal of Molecular and Cellular Cardiology, 2016, 90, 84-93.	0.9	343
23	The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 298-309.	1.8	328
24	Essential Role of Smad3 in Infarct Healing and in the Pathogenesis of Cardiac Remodeling. Circulation, 2007, 116, 2127-2138.	1.6	326
25	Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proceedings of the United States of America, 2006, 103, 18284-18289.	3.3	320
26	Smad3 Signaling Critically Regulates Fibroblast Phenotype and Function in Healing Myocardial Infarction. Circulation Research, 2010, 107, 418-428.	2.0	315
27	Interleukin-1 Receptor Type I Signaling Critically Regulates Infarct Healing and Cardiac Remodeling. American Journal of Pathology, 2008, 173, 57-67.	1.9	306
28	Cardiac Myocytes Produce Interleukin-6 in Culture and in Viable Border Zone of Reperfused Infarctions. Circulation, 1999, 99, 546-551.	1.6	302
29	Myocardial Extracellular Matrix. Circulation Research, 2014, 114, 872-888.	2.0	301
30	The Extracellular Matrix in Ischemic and Nonischemic Heart Failure. Circulation Research, 2019, 125, 117-146.	2.0	296
31	Critical Role of Endogenous Thrombospondin-1 in Preventing Expansion of Healing Myocardial Infarcts. Circulation, 2005, 111, 2935-2942.	1.6	280
32	IL-10 Is Induced in the Reperfused Myocardium and May Modulate the Reaction to Injury. Journal of Immunology, 2000, 165, 2798-2808.	0.4	261
33	The role of IL-1 in the pathogenesis of heart disease. Archivum Immunologiae Et Therapiae Experimentalis, 2009, 57, 165-176.	1.0	258
34	CCR5 Signaling Suppresses Inflammation and Reduces Adverse Remodeling of the Infarcted Heart, Mediating Recruitment of Regulatory T Cells. American Journal of Pathology, 2010, 176, 2177-2187.	1.9	257
35	Chemokines in ischemia and reperfusion. Thrombosis and Haemostasis, 2007, 97, 738-747.	1.8	253
36	The Mechanistic Basis of Infarct Healing. Antioxidants and Redox Signaling, 2006, 8, 1907-1939.	2.5	249

#	Article	IF	CITATIONS
37	Critical Role of Monocyte Chemoattractant Protein-1/CC Chemokine Ligand 2 in the Pathogenesis of Ischemic Cardiomyopathy. Circulation, 2007, 115, 584-592.	1.6	239
38	Fibroblasts in the Infarcted, Remodeling, and Failing Heart. JACC Basic To Translational Science, 2019, 4, 449-467.	1.9	229
39	Fibroblasts in post-infarction inflammation and cardiac repair. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 945-953.	1.9	227
40	Characterization of the inflammatory and fibrotic response in a mouse model of cardiac pressure overload. Histochemistry and Cell Biology, 2009, 131, 471-481.	0.8	226
41	Short Communication: Ischemia/Reperfusion Tolerance Is Time-of-Day–Dependent. Circulation Research, 2010, 106, 546-550.	2.0	215
42	Aging and Cardiac Fibrosis. , 2011, 2, 158-173.		201
43	Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovascular Research, 2000, 48, 89-100.	1.8	200
44	Obesity, metabolic dysfunction, and cardiac fibrosis: pathophysiological pathways, molecular mechanisms, and therapeutic opportunities. Translational Research, 2014, 164, 323-335.	2.2	200
45	IL-1 Induces Proinflammatory Leukocyte Infiltration and Regulates Fibroblast Phenotype in the Infarcted Myocardium. Journal of Immunology, 2013, 191, 4838-4848.	0.4	194
46	Antiâ€inflammatory therapies in myocardial infarction: failures, hopes and challenges. British Journal of Pharmacology, 2018, 175, 1377-1400.	2.7	192
47	The Role of Platelet-Derived Growth Factor Signaling in Healing Myocardial Infarcts. Journal of the American College of Cardiology, 2006, 48, 2315-2323.	1.2	191
48	Inflammatory Cytokines and Chemokines as Therapeutic Targets in Heart Failure. Cardiovascular Drugs and Therapy, 2020, 34, 849-863.	1.3	188
49	Targeting the Inflammatory Response in Healing Myocardial Infarcts. Current Medicinal Chemistry, 2006, 13, 1877-1893.	1.2	173
50	Chemokines in the ischemic myocardium: from inflammation to fibrosis. Inflammation Research, 2004, 53, 585-595.	1.6	172
51	Aging-Related Defects Are Associated With Adverse Cardiac Remodeling in a Mouse Model of Reperfused Myocardial Infarction. Journal of the American College of Cardiology, 2008, 51, 1384-1392.	1.2	171
52	Stem Cell Factor Induction Is Associated With Mast Cell Accumulation After Canine Myocardial Ischemia and Reperfusion. Circulation, 1998, 98, 687-698.	1.6	170
53	Targeting inflammatory pathways in myocardial infarction. European Journal of Clinical Investigation, 2013, 43, 986-995.	1.7	170
54	Cytokines and the Microcirculation in Ischemia and Reperfusion. Journal of Molecular and Cellular Cardiology, 1998, 30, 2567-2576.	0.9	168

#	Article	IF	CITATIONS
55	The Role of the TGF-Î ² Superfamily in Myocardial Infarction. Frontiers in Cardiovascular Medicine, 2019, 6, 140.	1.1	167
56	CD44 Is Critically Involved in Infarct Healing by Regulating the Inflammatory and Fibrotic Response. Journal of Immunology, 2008, 180, 2625-2633.	0.4	161
57	Lack of specificity of fibroblast-specific protein 1 in cardiac remodeling and fibrosis. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1363-H1372.	1.5	161
58	Morphological Characteristics of the Microvasculature in Healing Myocardial Infarcts. Journal of Histochemistry and Cytochemistry, 2002, 50, 71-79.	1.3	158
59	Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1233-H1242.	1.5	158
60	Inflammation in cardiac injury, repair and regeneration. Current Opinion in Cardiology, 2015, 30, 240-245.	0.8	148
61	The Immune System and the Remodeling Infarcted Heart. Journal of Cardiovascular Pharmacology, 2014, 63, 185-195.	0.8	137
62	Inflammatory Mechanisms in Myocardial Infarction. Inflammation and Allergy: Drug Targets, 2003, 2, 242-256.	3.1	133
63	Development of murine ischemic cardiomyopathy is associated with a transient inflammatory reaction and depends on reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2700-2705.	3.3	128
64	Opposing Actions of Fibroblast and Cardiomyocyte Smad3 Signaling in the Infarcted Myocardium. Circulation, 2018, 137, 707-724.	1.6	128
65	Identification of Hibernating Myocardium With Quantitative Intravenous Myocardial Contrast Echocardiography. Circulation, 2003, 107, 538-544.	1.6	127
66	Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovascular Research, 2019, 115, 1117-1130.	1.8	125
67	The role of inflammatory and fibrogenic pathways in heart failure associated with aging. Heart Failure Reviews, 2010, 15, 415-422.	1.7	123
68	Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges. Translational Research, 2016, 167, 152-166.	2.2	120
69	Endogenous Thrombospondin 1 Protects the Pressure-Overloaded Myocardium by Modulating Fibroblast Phenotype and Matrix Metabolism. Hypertension, 2011, 58, 902-911.	1.3	119
70	Chemokines in Myocardial Ischemia. Trends in Cardiovascular Medicine, 2005, 15, 163-169.	2.3	113
71	Induction of the CXC Chemokine Interferon-Î ³ -Inducible Protein 10 Regulates the Reparative Response Following Myocardial Infarction. Circulation Research, 2009, 105, 973-983.	2.0	113
72	Characterization of a mouse model of obesity-related fibrotic cardiomyopathy that recapitulates features of human heart failure with preserved ejection fraction. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H934-H949.	1.5	112

#	Article	IF	CITATIONS
73	Chemokines in ischemia and reperfusion. Thrombosis and Haemostasis, 2007, 97, 738-47.	1.8	109
74	The role of transforming growth factor (TGF)-β in the infarcted myocardium. Journal of Thoracic Disease, 2017, 9, S52-S63.	0.6	108
75	Thrombospondin-1 Induction in the Diabetic Myocardium Stabilizes the Cardiac Matrix in Addition to Promoting Vascular Rarefaction Through Angiopoietin-2 Upregulation. Circulation Research, 2013, 113, 1331-1344.	2.0	107
76	Reactive Oxygen Intermediates Induce Monocyte Chemotactic Protein-1 in Vascular Endothelium after Brief Ischemia. American Journal of Pathology, 2001, 159, 1301-1311.	1.9	105
77	Microvascular Structural Correlates of Myocardial Contrast Echocardiography in Patients With Coronary Artery Disease and Left Ventricular Dysfunction. Circulation, 2002, 106, 950-956.	1.6	105
78	Macrophage Smad3 Protects the Infarcted Heart, Stimulating Phagocytosis and Regulating Inflammation. Circulation Research, 2019, 125, 55-70.	2.0	105
79	Effects of diet-induced obesity on inflammation and remodeling after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2504-H2514.	1.5	99
80	Systematic Characterization of Myocardial Inflammation, Repair, and Remodeling in a Mouse Model of Reperfused Myocardial Infarction. Journal of Histochemistry and Cytochemistry, 2013, 61, 555-570.	1.3	99
81	Smad3 Signaling Promotes Fibrosis While Preserving Cardiac and Aortic Geometry in Obese Diabetic Mice. Circulation: Heart Failure, 2015, 8, 788-798.	1.6	99
82	Induction and suppression of interferonâ€inducible protein (IP)â€10 in reperfused myocardial infarcts may regulate angiogenesis. FASEB Journal, 2001, 15, 1428-1430.	0.2	98
83	Active interstitial remodeling: an important process in the hibernating human myocardium. Journal of the American College of Cardiology, 2002, 39, 1468-1474.	1.2	98
84	Mast cells and macrophages in normal C57/BL/6 mice. Histochemistry and Cell Biology, 2002, 118, 41-49.	0.8	96
85	Protective Effects of Activated Myofibroblasts in the Pressure-Overloaded Myocardium Are Mediated Through Smad-Dependent Activation of a Matrix-Preserving Program. Circulation Research, 2019, 124, 1214-1227.	2.0	96
86	The Extracellular Matrix Modulates Fibroblast Phenotype and Function in the Infarcted Myocardium. Journal of Cardiovascular Translational Research, 2012, 5, 837-847.	1.1	94
87	MCSF expression is induced in healing myocardial infarcts and may regulate monocyte and endothelial cell phenotype. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H483-H492.	1.5	92
88	Chemokines and cardiac fibrosis. Frontiers in Bioscience - Scholar, 2009, S1, 391-405.	0.8	90
89	Impact of myocardial structure and function postinfarction on diastolic strain measurements: implications for assessment of myocardial viability. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H724-H731.	1.5	89
90	Transforming growth factor-β in myocardial disease. Nature Reviews Cardiology, 2022, 19, 435-455.	6.1	87

#	Article	IF	CITATIONS
91	Evidence for an Active Inflammatory Process in the Hibernating Human Myocardium. American Journal of Pathology, 2002, 160, 1425-1433.	1.9	82
92	Mast cell tryptase may modulate endothelial cell phenotype in healing myocardial infarcts. Journal of Pathology, 2005, 205, 102-111.	2.1	82
93	Diabetic fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166044.	1.8	81
94	Endogenous IRAK-M Attenuates Postinfarction Remodeling Through Effects on Macrophages and Fibroblasts. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2598-2608.	1.1	78
95	MCP-1/CCL2 as a Therapeutic Target in Myocardial Infarction and Ischemic Cardiomyopathy. Inflammation and Allergy: Drug Targets, 2007, 6, 101-107.	1.8	77
96	Thrombospondin-1 regulates adiposity and metabolic dysfunction in diet-induced obesity enhancing adipose inflammation and stimulating adipocyte proliferation. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E439-E450.	1.8	75
97	Myocardial Galectin-3 Expression Is Associated with Remodeling of the Pressure-Overloaded Heart and May Delay the Hypertrophic Response without Affecting Survival, Dysfunction, and Cardiac Fibrosis. American Journal of Pathology, 2016, 186, 1114-1127.	1.9	75
98	Fibroblasts and the extracellular matrix in right ventricular disease. Cardiovascular Research, 2017, 113, 1453-1464.	1.8	74
99	Targeting the Chemokines in Cardiac Repair. Current Pharmaceutical Design, 2014, 20, 1971-1979.	0.9	73
100	Immune cells in repair of the infarcted myocardium. Microcirculation, 2017, 24, e12305.	1.0	71
101	Interleukin-10 is not a critical regulator of infarct healing and left ventricular remodeling. Cardiovascular Research, 2007, 74, 313-322.	1.8	68
102	Interleukin-1 in cardiac injury, repair, and remodeling: pathophysiologic and translational concepts. Discoveries, 2015, 3, e41.	1.5	67
103	Chemokines in Myocardial Infarction. Journal of Cardiovascular Translational Research, 2021, 14, 35-52.	1.1	66
104	Monocyte chemoattractant protein-1/CCL2 as a biomarker in acute coronary syndromes. Current Atherosclerosis Reports, 2009, 11, 131-138.	2.0	64
105	Biomarkers: hopes and challenges in the path from discovery to clinical practice. Translational Research, 2012, 159, 197-204.	2.2	64
106	CXCR3-independent actions of the CXC chemokine CXCL10 in the infarcted myocardium and in isolated cardiac fibroblasts are mediated through proteoglycans. Cardiovascular Research, 2014, 103, 217-227.	1.8	61
107	Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction. Cells, 2022, 11, 1386.	1.8	60
108	Histochemical and morphological characteristics of canine cardiac mast cells. The Histochemical Journal, 1999, 31, 221-229.	0.6	59

#	Article	IF	CITATIONS
109	Brief murine myocardial I/R induces chemokines in a TNF-α-independent manner: role of oxygen radicals. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2549-H2558.	1.5	59
110	The role of Smad signaling cascades in cardiac fibrosis. Cellular Signalling, 2021, 77, 109826.	1.7	57
111	Extracellular matrix-derived peptides in tissue remodeling and fibrosis. Matrix Biology, 2020, 91-92, 176-187.	1.5	56
112	Distinct roles of myofibroblast-specific Smad2 and Smad3 signaling in repair and remodeling of the infarcted heart. Journal of Molecular and Cellular Cardiology, 2019, 132, 84-97.	0.9	53
113	Guidelines for in vivo mouse models of myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H1056-H1073.	1.5	53
114	The Role of the Thrombospondins in Healing Myocardial Infarcts. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2007, 5, 21-27.	0.4	52
115	Left atrial remodeling, hypertrophy, and fibrosis in mouse models of heart failure. Cardiovascular Pathology, 2017, 30, 27-37.	0.7	51
116	Cyclophosphamide in the Treatment of Toxic Epidermal Necrolysis. Southern Medical Journal, 1996, 89, 1001-1003.	0.3	50
117	Crossing Into the Next Frontier of Cardiac Extracellular Matrix Research. Circulation Research, 2016, 119, 1040-1045.	2.0	50
118	Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities. Advanced Drug Delivery Reviews, 2021, 176, 113904.	6.6	49
119	The Role of the Chemokines in Myocardial Ischemia and Reperfusion. Current Vascular Pharmacology, 2004, 2, 163-174.	0.8	49
120	Platelet–monocyte complex formation: effect of blocking PSGL-1 alone, and in combination with αIIbβ3 and αMβ2, in coronary stenting. Thrombosis Research, 2003, 111, 171-177.	0.8	47
121	Cell biological mechanisms in regulation of the post-infarction inflammatory response. Current Opinion in Physiology, 2018, 1, 7-13.	0.9	47
122	Vascular Mural Cells in Healing Canine Myocardial Infarcts. Journal of Histochemistry and Cytochemistry, 2004, 52, 1019-1029.	1.3	43
123	Emerging roles for macrophages in cardiac injury: cytoprotection, repair, and regeneration. Journal of Clinical Investigation, 2015, 125, 2927-2930.	3.9	43
124	Extracellular Matrix in Ischemic Heart Disease, Part 4/4. Journal of the American College of Cardiology, 2020, 75, 2219-2235.	1.2	42
125	Mechanisms of Fibroblast Activation in the Remodeling Myocardium. Current Pathobiology Reports, 2017, 5, 145-152.	1.6	39
126	Cell therapy for peripheral artery disease. Current Opinion in Pharmacology, 2018, 39, 27-34.	1.7	39

#	Article	IF	CITATIONS
127	Induction of the synthesis of the C-X-C chemokine interferon-Î ³ -inducible protein-10 in experimental canine endotoxemia. Cell and Tissue Research, 2000, 302, 365-376.	1.5	38
128	The role of thrombospondin (TSP)-1 in obesity and diabetes. Adipocyte, 2014, 3, 81-84.	1.3	37
129	Macrophages in the Remodeling Failing Heart. Circulation Research, 2016, 119, 776-778.	2.0	37
130	Fibroblast—Extracellular Matrix Interactions in Tissue Fibrosis. Current Pathobiology Reports, 2016, 4, 11-18.	1.6	36
131	Smad7 effects on TGF-β and ErbB2 restrain myofibroblast activation and protect from postinfarction heart failure. Journal of Clinical Investigation, 2022, 132, .	3.9	36
132	Tissue transglutaminase induction in the pressure-overloaded myocardium regulates matrix remodelling. Cardiovascular Research, 2017, 113, 892-905.	1.8	35
133	Syndecan-1. Hypertension, 2010, 55, 233-235.	1.3	32
134	Uncontrolled angiogenic precursor expansion causes coronary artery anomalies in mice lacking Pofut1. Nature Communications, 2017, 8, 578.	5.8	32
135	Increased Myocardial Susceptibility to Repetitive Ischemia With Highâ€fat dietâ€induced Obesit. Obesity, 2008, 16, 2593-2600.	1.5	31
136	The role of Smad2 and Smad3 in regulating homeostatic functions of fibroblasts in vitro and in adult mice. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118703.	1.9	31
137	Targeting the Chemokines in Myocardial Inflammation. Circulation, 2004, 110, 1341-1342.	1.6	30
138	Reperfused vs. nonreperfused myocardial infarction: when to use which model. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H208-H213.	1.5	29
139	Pharmacologic inhibition of the enzymatic effects of tissue transglutaminase reduces cardiac fibrosis and attenuates cardiomyocyte hypertrophy following pressure overload. Journal of Molecular and Cellular Cardiology, 2018, 117, 36-48.	0.9	27
140	The Stromal Cell–Derived Factor-1/CXCR4 Axis in Cardiac Injury and Repair. Journal of the American College of Cardiology, 2011, 58, 2424-2426.	1.2	26
141	The Role of Macrophages in NonischemicÂHeart Failure. JACC Basic To Translational Science, 2018, 3, 245-248.	1.9	25
142	Pericytes in the infarcted heart. Vascular Biology (Bristol, England), 2019, 1, H23-H31.	1.2	25
143	Chemokines in cardiac fibrosis. Current Opinion in Physiology, 2021, 19, 80-91.	0.9	24
144	The Cellular Origin of Activated Fibroblasts in the Infarcted and Remodeling Myocardium. Circulation Research, 2018, 122, 540-542.	2.0	23

#	Article	IF	CITATIONS
145	Pemphigus of the Larynx and Esophagus. Annals of Internal Medicine, 1995, 122, 803.	2.0	22
146	Targeting the transforming growth factor (TGF)-β cascade in the remodeling heart: Benefits and perils. Journal of Molecular and Cellular Cardiology, 2014, 76, 169-171.	0.9	22
147	The Functional Heterogeneity of Resident Cardiac Macrophages in Myocardial Injury. Circulation Research, 2019, 124, 183-185.	2.0	22
148	Validation of diagnostic criteria and histopathological characterization of cardiac rupture in the mouse model of nonreperfused myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H948-H964.	1.5	21
149	S100A8/A9 as a therapeutic target in myocardial infarction: cellular mechanisms, molecular interactions, and translational challenges. European Heart Journal, 2019, 40, 2724-2726.	1.0	20
150	Can Myocardial Fibrosis Be Reversed?. Journal of the American College of Cardiology, 2019, 73, 2283-2285.	1.2	19
151	Tissue transglutaminase in the pathogenesis of heart failure. Cell Death and Differentiation, 2018, 25, 453-456.	5.0	18
152	Endocarditis and Ureaplasma urealyticum osteomyelitis in a hypogammaglobulinemic patient. A case report and review of the literature. Journal of Infection, 1998, 37, 181-184.	1.7	17
153	The role of Interleukin Receptor Associated Kinase (IRAK)-M in regulation of myofibroblast phenotype in vitro, and in an experimental model of non-reperfused myocardial infarction. Journal of Molecular and Cellular Cardiology, 2015, 89, 223-231.	0.9	16
154	The Functional Pluralism of Fibroblasts in the Infarcted Myocardium. Circulation Research, 2016, 119, 1049-1051.	2.0	16
155	Collagen denaturation in the infarcted myocardium involves temporally distinct effects of MT1-MMP-dependent proteolysis and mechanical tension. Matrix Biology, 2021, 99, 18-42.	1.5	16
156	The significance of COVID-19-associated myocardial injury: how overinterpretation of scientific findings can fuel media sensationalism and spread misinformation. European Heart Journal, 2020, 41, 3836-3838.	1.0	15
157	Validation of Specific and Reliable Genetic Tools to Identify, Label, and Target Cardiac Pericytes in Mice. Journal of the American Heart Association, 2022, 11, e023171.	1.6	15
158	Identification of macrophages in normal and injured mouse tissues using reporter lines and antibodies. Scientific Reports, 2022, 12, 4542.	1.6	12
159	The Reparative Function of Cardiomyocytes in the Infarcted Myocardium. Cell Metabolism, 2015, 21, 797-798.	7.2	10
160	Smad-dependent pathways in the infarcted and failing heart. Current Opinion in Pharmacology, 2022, 64, 102207.	1.7	10
161	Phagocytes in Ischemia Injury. Annals of the New York Academy of Sciences, 1997, 832, 243-265.	1.8	9
162	Galectin-3 in the fibrotic response: Cellular targets and molecular mechanisms. International Journal of Cardiology, 2018, 258, 226-227.	0.8	9

#	Article	IF	CITATIONS
163	Identification of Mast Cells in the Cellular Response to Myocardial Infarction. , 2006, 315, 091-102.		7
164	Fact and Fiction About Fibroblast to Endothelium Conversion. Circulation, 2020, 142, 1663-1666.	1.6	7
165	Differential effects of Smad2 and Smad3 in regulation of macrophage phenotype and function in the infarcted myocardium. Journal of Molecular and Cellular Cardiology, 2022, 171, 1-15.	0.9	7
166	Tirofiban for Cocaine-Induced Coronary Artery Thrombosis. Circulation, 1999, 100, 1939-1939.	1.6	6
167	Stromal Cell–Derived Factor-1–Mediated Angiogenesis for Peripheral Arterial Disease. Circulation, 2011, 123, 1267-1269.	1.6	6
168	Monomeric C-reactive protein and inflammatory injury in myocardial infarction. Cardiovascular Research, 2012, 96, 4-6.	1.8	6
169	The Inflammatory Response in Tissue Repair. , 0, , 1517-1538.		6
170	Integrated multimodal-catheter imaging unveils principal relationships among ventricular electrical activity, anatomy, and function. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1002-H1009.	1.5	5
171	Chemokines in myocardial infarction: translating basic research into clinical medicine. Future Cardiology, 2008, 4, 347-351.	0.5	5
172	Protean Functions and Phenotypic Plasticity of Regulatory T Cells in Chronic Ischemic Heart Failure. Circulation, 2019, 139, 222-225.	1.6	5
173	MicroRNAs and Endothelial Function. Journal of the American College of Cardiology, 2014, 63, 1695-1696.	1.2	4
174	Editor's Choice- Activation of the innate immune system in the pathogenesis of acute heart failure. European Heart Journal: Acute Cardiovascular Care, 2018, 7, 358-361.	0.4	4
175	Galectin-3 in the pathogenesis of heart failure: a causative mediator or simply a biomarker?. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H1256-H1258.	1.5	4
176	Why animal model studies are lost in translation. , 2022, 2, .		4
177	The role of endogenous Smad7 in regulating macrophage phenotype following myocardial infarction. FASEB Journal, 2022, 36, .	0.2	4
178	The cellular specificity of leptin-mediated actions in the infarcted heart. Cardiovascular Research, 2011, 89, 9-11.	1.8	3
179	The cell biological basis for primary unloading in acute myocardial infarction. International Journal of Cardiology, 2019, 293, 45-47.	0.8	3

Role of Inflammation Following Myocardial Ischemia and Reperfusion. , 1997, , 569-584.

3

#	Article	IF	CITATIONS
181	Matricellular Proteins in Myocardial Infarction. Current Cardiology Reviews, 2006, 2, 163-171.	0.6	2
182	How do endosomal Toll-like receptors sense and extend ischaemic myocardial injury?. Cardiovascular Research, 2019, 115, 1687-1689.	1.8	2
183	Monocyte subsets as predictors of adverse events in patients with atherosclerosis. Hellenic Journal of Cardiology, 2019, 60, 322-323.	0.4	2
184	Platelet-derived growth factor (PDGF) therapy in myocardial infarction: Challenges and opportunities. International Journal of Cardiology, 2021, 341, 74-75.	0.8	2
185	Mast Cells in Myocardial Ischaemia and Reperfusion. , 2000, , 507-522.		2
186	Contribution of Extramedullary Organs in Myocardial Inflammation and Remodeling. Circulation Research, 2014, 114, 230-232.	2.0	1
187	Repair of the Infarcted Myocardium. , 2015, , 279-297.		1
188	Aging, cardiac repair and Smad3. Aging, 2018, 10, 2230-2232.	1.4	1
189	Targeting mitochondrial calcium transport in myocardial infarction. Hellenic Journal of Cardiology, 2018, 59, 223-225.	0.4	1
190	Fibroblast Activation in the Infarcted Myocardium. , 2015, , 5-22.		1
191	The Mast Cell: A Potential Therapeutic Target in Myocardial Infarction. Drug Design Reviews Online, 2005, 2, 219-225.	0.7	1
192	Abstract 16793: Smad7 Induction in Activated Infarct Myofibroblasts Protects From Adverse Remodeling by Restraining TGF-beta-Mediated and Receptor Tyrosine Kinase Signaling. Circulation, 2020, 142, .	1.6	1
193	The Role of Inflammation in Cardiac Function and Repair. Progress in Experimental Cardiology, 2003, , 19-28.	0.0	0
194	Inflammatory Biomarkers in Post-infarction Heart Failure and Cardiac Remodeling. , 2015, , 105-116.		0
195	Mediators Secreted by Myeloid Cells May Protect and Repair the Infarcted Myocardium. Circulation Research, 2015, 117, 10-12.	2.0	0
196	Authors' Reply. American Journal of Pathology, 2016, 186, 2234-2235.	1.9	0
197	Editorial commentary: Myocardial fibrosis in genetic cardiomyopathies: A cause of dysfunction, or simply an epiphenomenon?. Trends in Cardiovascular Medicine, 2020, 30, 362-363.	2.3	0
198	Pericytes in Myocardial Diseases. Pancreatic Islet Biology, 2021, , 219-243.	0.1	0

#	Article	IF	CITATIONS
199	Editorsâ \in TM Preamble to The Journal of Cardiovascular Aging. , 2021, 1, .		0
200	Myocardial reperfusion: A State of Inflammation. , 2001, , 93-101.		0
201	Mast Cells in Experimental Myocardial Infarction. Developments in Cardiovascular Medicine, 2003, , 121-132.	0.1	0
202	Induction of Thrombospondin (TSP)â€1 and Tissue Transglutaminase (tTG) in the Infarct Border Zone May Limit Expansion of Granulation Tissue Formation. FASEB Journal, 2006, 20, .	0.2	0
203	DEFECTIVE ILâ€I SIGNALING RESULTS IN SUPPRESSED INFLAMMATION AND DECREASED REMODELING AFTER MYOCARDIAL INFARCTION. FASEB Journal, 2007, 21, A1144.	0.2	0
204	SMAD3 SIGNALING CRITICALLY REGULATES INFARCT HEALING. FASEB Journal, 2007, 21, .	0.2	0
205	Endogenous CXCL10/Interferonâ€Î³â€Inducible Protein (IP)â€10 orchestrates myocardial infarct healing. FASEB Journal, 2008, 22, 466.10.	0.2	0
206	Abstract 372: The Smad3 Pathway Critically Regulates Myofibroblast Proliferation And Synthetic Activity In Healing Myocardial Infarcts. Circulation, 2008, 118, .	1.6	0
207	CCR5 signaling suppresses inflammation and attenuates adverse remodeling in healing myocardial infarcts FASEB Journal, 2009, 23, 235.7.	0.2	0
208	Negative Regulators of Inflammation as Endogenous Protective Mechanisms in Postinfarction Remodeling. , 2013, , 313-330.		0
209	Aging-Associated Alterations in Myocardial Inflammation and Fibrosis: Pathophysiological Perspectives and Clinical Implications. , 2014, , 361-375.		0
210	Abstract 247: Phagocytosis-mediated Activation of Smad3 in Macrophages Mediates Anti-inflammatory Transition and Protects From Adverse Post-infarction Remodeling. Circulation Research, 2019, 125, .	2.0	0
211	Abstract 250: Smad3-Mediated Induction of Smad7 in Activated Myofibroblasts Protects the Remodeling Myocardium. Circulation Research, 2019, 125, .	2.0	0
212	Abstract MP123: The Fate and Role of Pericytes in Repair and Remodeling of the Infarcted Heart. Circulation Research, 2020, 127, .	2.0	0
213	Abstract 395: The Role of Transglutaminase 2 (tg2) in Regulation of Macrophage Phenotype. Circulation Research, 2020, 127, .	2.0	0
214	Abstract MP152: Smad1 Activation in Infarct Macrophages Restrains Angiogenesis and Accentuates Adverse Remodeling of the Infarcted Myocardium. Circulation Research, 2020, 127, .	2.0	0
215	Abstract MP225: Macrophage-specific1±5 Integrin Signaling Protects The Infarcted Heart From Adverse Remodeling By Stimulating The Angiogenic Response. Circulation Research, 2021, 129, .	2.0	0
216	Abstract MP262: Endogenous Smad7 Restrains Myofibroblast Activation And Protects From Post-infarction Heart Failure By Suppressing Tgf-beta Signaling And By Directly Inhibiting Erbb2. Circulation Research, 2021, 129, .	2.0	0

#	Article	IF	CITATIONS
217	Abstract 120: Pericytes Contribute To Myofibroblast Expansion And Vascular Maturation In The Infarcted Heart. Circulation Research, 2021, 129, .	2.0	0