Amadou L Ndiaye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/631247/publications.pdf Version: 2024-02-01

Αμαροίι Ι. Νριάχε

#	Article	IF	CITATIONS
1	Tunning the Gas Sensing Properties of rGO with In2O3 Nanoparticles. Surfaces, 2022, 5, 127-142.	2.3	5
2	Phthalocyanines and Porphyrins/Polyaniline Composites (PANI/CuPctBu and PANI/TPPH2) as Sensing Materials for Ammonia Detection. Polymers, 2022, 14, 891.	4.5	2
3	Improvement in metrological performances of phthalocyanine-based QCM sensors for BTX detection in air through substituent's effect. Sensors and Actuators B: Chemical, 2022, 368, 132253.	7.8	7
4	Ozone detection in the ppt-level with rGO-ZnO based sensor. Sensors and Actuators B: Chemical, 2021, 338, 129779.	7.8	25
5	Effect of metallic contacts diffusion on Au/GaAs and Au/GaN/GaAs SBDs electrical quality during their fabrication process. Journal of Alloys and Compounds, 2021, 876, 159596.	5.5	5
6	Macrocycle-Functionalized RGO for Gas Sensors for BTX Detection Using a Double Transduction Mode. Chemosensors, 2021, 9, 346.	3.6	6
7	MWCNTs/PMMA/PS composites functionalized PANI: electrical characterization and sensing performance for ammonia detection in a humid environment. Sensors and Actuators B: Chemical, 2020, 320, 128364.	7.8	14
8	Insight in the interaction mechanisms between functionalized CNTs and BTX vapors in gas sensors: Are the functional peripheral groups the key for selectivity?. Sensors and Actuators B: Chemical, 2019, 298, 126768.	7.8	16
9	Functionalized CNTs-Based Gas Sensors for BTX-Type Gases: How Functional Peripheral Groups Can Affect the Time Response through Surface Reactivity. Journal of Physical Chemistry C, 2018, 122, 21632-21643.	3.1	13
10	Nanomaterials for the Selective Detection of Hydrogen Sulfide in Air. Sensors, 2017, 17, 391.	3.8	50
11	Electrochemical Sensors Based on Screen-Printed Electrodes: The Use of Phthalocyanine Derivatives for Application in VFA Detection. Biosensors, 2016, 6, 46.	4.7	15
12	Phthalocyanines based QCM sensors for aromatic hydrocarbons monitoring: Role of metal atoms and substituents on response to toluene. Sensors and Actuators B: Chemical, 2016, 230, 320-329.	7.8	51
13	Electrodes Modification Based on Metal-Free Phthalocyanine: Example of Electrochemical Sensors for the Detection of Acetic Acid. Journal of Sensors, 2015, 2015, 1-7.	1.1	Ο
14	Tetra-tert-butyl copper phthalocyanine-based QCM sensor for toluene detection in air at room temperature. Sensors and Actuators B: Chemical, 2015, 210, 398-407.	7.8	71
15	Room Temperature Measurements of Aromatic Hydrocarbons by QCM-based Gas Sensors: Intercomparison between Phthalocyanines and Phthalocyanine/CNTs Hybrid Material. Procedia Engineering, 2015, 120, 594-597.	1.2	8
16	Functionalized Carbon Nanotubes-Based Gas Sensors for Pollutants Detection: Investigation on the Use of a Double Transduction Mode. Key Engineering Materials, 2014, 605, 75-78.	0.4	2
17	New Indigo/Nanocarbons Hybrid Material as Chemical Filter for the Enhancement of Gas Sensor Selectivity towards Nitrogen Dioxide. Key Engineering Materials, 2014, 605, 135-138.	0.4	0
18	Improved selectivity towards NO2 of phthalocyanine-based chemosensors by means of original indigo/nanocarbons hybrid material. Talanta, 2014, 127, 100-107.	5.5	7

Amadou L Ndiaye

#	Article	IF	CITATIONS
19	Noncovalent Functionalization of Single-Wall Carbon Nanotubes for the Elaboration of Gas Sensor Dedicated to BTX Type Gases: The Case of Toluene. Journal of Physical Chemistry C, 2013, 117, 20217-20228.	3.1	36
20	A carbonaceous chemical filter for the selective detection of NO2 in the environment. Carbon, 2013, 52, 17-29.	10.3	8
21	Indigo molecules adsorbed on carbonaceous nanomaterials as chemical filter for the selective detection of NO2 in the environment. Journal of Colloid and Interface Science, 2013, 407, 39-46.	9.4	9
22	An innovative gas sensor system designed from a sensitive organic semiconductor downstream a nanocarbonaceous chemical filter for the selective detection of NO2 in an environmental context. Sensors and Actuators B: Chemical, 2012, 173, 659-667.	7.8	17
23	An innovative gas sensor system designed from a sensitive organic semiconductor downstream a nanocarbonaceous chemical filter for selective detection of NO2 in an environmental context. Part II: Interpretations of O3/nanocarbons and NO2/nanocarbons interactions. Sensors and Actuators B: Chemical. 2012. 173. 652-658.	7.8	11
24	Nanocarbonaceous Filters for the Achievement of Highly Sensitive and Selective NO2 Monitoring by Means of Phthalocyanine-Based Resistive Sensors. Procedia Engineering, 2012, 47, 29-32.	1.2	3
25	Elaboration of SWNTs-based gas sensors using dispersion techniques: Evaluating the role of the surfactant and its influence on the sensor response. Sensors and Actuators B: Chemical, 2012, 162, 95-101.	7.8	15
26	Comparison of InP Schottky diodes based on Au or Pd sensing electrodes for NO2 and O3 sensing. Solid-State Electronics, 2012, 72, 29-37.	1.4	6
27	Elaboration of single wall carbon nanotubes-based gas sensors: Evaluating the bundling effect on the sensor performance. Thin Solid Films, 2012, 520, 4465-4469.	1.8	21
28	Physical and chemical characterizations of nanometric indigo layers as efficient ozone filter for gas sensor devices. Thin Solid Films, 2011, 520, 971-977.	1.8	12
29	Luminescent Study on Nd ³⁺ Complexes Containing Carboxylateâ€Dithiolene and Alkoxideâ€Dithiolene Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 2551-2556.	1.2	1
30	Syntheses, Structures, and Photophysical Properties of Mono- and Dinuclear Sulfur-Rich Gold(I) Complexes. Inorganic Chemistry, 2008, 47, 7483-7492.	4.0	35
31	Modification of the Hydrogen Bonds Network in a Hydroxyl Functionalized Dithiolene Ligand by HgX ₂ Complexation. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2007, 633, 1959-1963.	1.2	6