
Cathryn O'Sullivan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/631237/publications.pdf Version: 2024-02-01

<u>CATHOVN Ο'SHILIWAN</u>

#	Article	IF	CITATIONS
1	Developing Actinobacterial Endophytes as Biocontrol Products for Fusarium pseudograminearum in Wheat. Frontiers in Bioengineering and Biotechnology, 2021, 9, 691770.	4.1	10
2	Tackling Control of a Cosmopolitan Phytopathogen: Sclerotinia. Frontiers in Plant Science, 2021, 12, 707509.	3.6	39
3	A Plant Stress-Responsive Bioreporter Coupled With Transcriptomic Analysis Allows Rapid Screening for Biocontrols of Necrotrophic Fungal Pathogens. Frontiers in Molecular Biosciences, 2021, 8, 708530.	3.5	4
4	Increasing the Diversity of Crops That Can Be Grown in Urban and Vertical Farms. Proceedings (mdpi), 2020, 36, .	0.2	0
5	Vertical farms bear fruit. Nature Biotechnology, 2020, 38, 160-162.	17.5	34
6	Strategies to improve the productivity, product diversity and profitability of urban agriculture. Agricultural Systems, 2019, 174, 133-144.	6.1	103
7	Yield and nitrogen use efficiency of wheat increased with root length and biomass due to nitrogen, phosphorus, and potassium interactions. Journal of Plant Nutrition and Soil Science, 2018, 181, 364-373.	1.9	57
8	Draft Genome Sequences of Streptomyces sp. Strains MH60 and 111WW2. Genome Announcements, 2018, 6, .	0.8	1
9	Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertiliser use, grain yield and protein content of wheat: Review. Field Crops Research, 2018, 226, 56-65.	5.1	103
10	Dimethylarsenate (DMA) exposure influences germination rates, arsenic uptake and arsenic species formation in wheat. Chemosphere, 2017, 181, 44-54.	8.2	31
11	A Sclerotinia disease assay for screening flowering canola plants in controlled environments. Australasian Plant Pathology, 2017, 46, 333-338.	1.0	4
12	The nitrification inhibitor 3,4,-dimethylpyrazole phosphate strongly inhibits nitrification in coarse-grained soils containing a low abundance of nitrifying microbiota. Soil Research, 2017, 55, 28.	1.1	13
13	Draft Genome Sequence of Rhodococcus sp. Strain 66b. Genome Announcements, 2017, 5, .	0.8	2
14	A colourimetric microplate assay for simple, high throughput assessment of synthetic and biological nitrification inhibitors. Plant and Soil, 2017, 413, 275-287.	3.7	19
15	Selenium speciation in wheat grain varies in the presence of nitrogen and sulphur fertilisers. Environmental Geochemistry and Health, 2017, 39, 955-966.	3.4	43
16	Biological nitrification inhibition by weeds: wild radish, brome grass, wild oats and annual ryegrass decrease nitrification rates in their rhizospheres. Crop and Pasture Science, 2017, 68, 798.	1.5	18
17	Crop and microbial responses to the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in Mediterranean wheat-cropping systems. Soil Research, 2017, 55, 553.	1.1	10
18	Critical analysis of hydrogen production from mixed culture fermentation under thermophilic condition (60°C). Applied Microbiology and Biotechnology, 2016, 100, 5165-5176.	3.6	4

CATHRYN O'SULLIVAN

#	Article	IF	CITATIONS
19	Inorganic Arsenic Concentrations in Wheat Chaff Exceed Those in Wheat Grain. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	1
20	A composite guanyl thiourea (GTU), dicyandiamide (DCD) inhibitor improves the efficacy of nitrification inhibition in soil. Chemosphere, 2016, 163, 1-5.	8.2	6
21	Identification of several wheat landraces with biological nitrification inhibition capacity. Plant and Soil, 2016, 404, 61-74.	3.7	65
22	Changes in glucose fermentation pathways by an enriched bacterial culture in response to regulated dissolved H ₂ concentrations. Biotechnology and Bioengineering, 2015, 112, 1177-1186.	3.3	7
23	Predicting the efficacy of the nitrification inhibitor dicyandiamide in pastoral soils. Plant and Soil, 2014, 381, 35-43.	3.7	22
24	Factors affecting ammonia-oxidising microorganisms and potential nitrification rates in southern Australian agricultural soils. Soil Research, 2013, 51, 240.	1.1	34
25	Fate of pathogen indicators in a domestic blend of food waste and wastewater through a two-stage anaerobic digestion system. Water Science and Technology, 2013, 67, 366-373.	2.5	11
26	Archaeal ammonia oxidisers are abundant in acidic, coarse-textured Australian soils. Soil Research, 2011, 49, 715.	1.1	7
27	Experimental and theoretical investigation of diffusion processes in a membrane anaerobic reactor for bio-hydrogen production. International Journal of Hydrogen Energy, 2010, 35, 5301-5311.	7.1	14
28	Anaerobic digestion of harvested aquatic weeds: water hyacinth (Eichhornia crassipes), cabomba (Cabomba Caroliniana) and salvinia (Salvinia molesta). Ecological Engineering, 2010, 36, 1459-1468.	3.6	98
29	The anaerobic degradability of thermoplastic starch: Polyvinyl alcohol blends: Potential biodegradable food packaging materials. Bioresource Technology, 2009, 100, 1705-1710.	9.6	115
30	Application of flowcell technology for monitoring biofilm development and cellulose degradation in leachate and rumen systems. Bioresource Technology, 2009, 100, 492-496.	9.6	19
31	The effect of biomass density on cellulose solubilisation rates. Bioresource Technology, 2008, 99, 4723-4731.	9.6	23
32	The effect of media changes on the rate of cellulose solubilisation by rumen and digester derived microbial communities. Waste Management, 2007, 27, 1808-1814.	7.4	13
33	A survey of the relative abundance of specific groups of cellulose degrading bacteria in anaerobic environments using fluorescencein situhybridization. Journal of Applied Microbiology, 2007, 103, 1332-1343.	3.1	14
34	Comparison of cellulose solubilisation rates in rumen and landfill leachate inoculated reactors. Bioresource Technology, 2006, 97, 2356-2363.	9.6	26
35	Structure of a cellulose degrading bacterial community during anaerobic digestion. Biotechnology and Bioengineering, 2005, 92, 871-878.	3.3	75
36	Sources of Hydrogen Sulfide in Groundwater on Reclaimed Land. Journal of Environmental Engineering, ASCE, 2005, 131, 471-477.	1.4	7

#	Article	IF	CITATIONS
37	Identification, Detection, and Spatial Resolution of Clostridium Populations Responsible for Cellulose Degradation in a Methanogenic Landfill Leachate Bioreactor. Applied and Environmental Microbiology, 2004, 70, 2414-2419.	3.1	113