Ignasi Burgués-Ceballos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6311412/publications.pdf

Version: 2024-02-01

794594 687363 19 773 13 19 citations h-index g-index papers 19 19 19 1308 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Mixed AgBiS ₂ nanocrystals for photovoltaics and photodetectors. Nanoscale, 2022, 14, 4987-4993.	5.6	14
2	Cation disorder engineering yields AgBiS2 nanocrystals with enhanced optical absorption for efficient ultrathin solar cells. Nature Photonics, 2022, 16, 235-241.	31.4	100
3	Transparent organic photovoltaics: A strategic niche to advance commercialization. Joule, 2021, 5, 2261-2272.	24.0	44
4	Towards photovoltaic windows: scalable fabrication of semitransparent modules based on non-fullerene acceptors <i>via</i> laser-patterning. Journal of Materials Chemistry A, 2020, 8, 9882-9895.	10.3	25
5	Colloidal AgBiS2 nanocrystals with reduced recombination yield 6.4% power conversion efficiency in solution-processed solar cells. Nano Energy, 2020, 75, 104961.	16.0	41
6	Cation Disorder and Local Structural Distortions in AgxBi1–xS2 Nanoparticles. Nanomaterials, 2020, 10, 316.	4.1	2
7	Up-scalable ITO-free organic light emitting diodes based on embedded inkjet-printed copper grids. Flexible and Printed Electronics, 2019, 4, 025004.	2.7	12
8	Printed Copper Nanoparticle Metal Grids for Costâ€Effective ITOâ€Free Solution Processed Solar Cells. Solar Rrl, 2018, 2, 1700192.	5 . 8	31
9	Inkjet-printed embedded Ag-PEDOT:PSS electrodes with improved light out coupling effects for highly efficient ITO-free blue polymer light emitting diodes. Applied Physics Letters, 2017, 110, .	3.3	48
10	The influence of additives in the stoichiometry of hybrid lead halide perovskites. AIP Advances, 2017, 7, .	1.3	7
11	Improved Performance and Reliability of pâ€iâ€n Perovskite Solar Cells via Doped Metal Oxides. Advanced Energy Materials, 2016, 6, 1600285.	19.5	67
12	High performance indium tin oxide-free solution-processed organic light emitting diodes based on inkjet-printed fine silver grid lines. Flexible and Printed Electronics, $2016,1,035004.$	2.7	22
13	Highâ€Performing Polycarbazole Derivatives for Efficient Solutionâ€Processing of Organic Solar Cells in Air. ChemSusChem, 2015, 8, 4209-4215.	6.8	18
14	Classification of Additives for Organic Photovoltaic Devices. ChemPhysChem, 2015, 16, 1275-1280.	2.1	47
15	High-Performance Inverted Organic Photovoltaics Without Hole-Selective Contact. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24608-24615.	8.0	9
16	Solubility Based Identification of Green Solvents for Small Molecule Organic Solar Cells. Advanced Functional Materials, 2014, 24, 1449-1457.	14.9	132
17	Embedded inkjet printed silver grids for ITO-free organic solar cells with high fill factor. Solar Energy Materials and Solar Cells, 2014, 127, 50-57.	6.2	45
18	Towards industrialization of polymer solar cells: material processing for upscaling. Journal of Materials Chemistry A, 2014, 2, 17711-17722.	10.3	98

#	Article	IF	CITATIONS
19	Fast annealing and patterning of polymer solar cells by means of vapor printing. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1245-1252.	2.1	11