Daniel Meulemans Medeiros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6311196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient CRISPR Mutagenesis in Sturgeon Demonstrates Its Utility in Large, Slow-Maturing Vertebrates. Frontiers in Cell and Developmental Biology, 2022, 10, 750833.	3.7	7
2	A Comprehensive Analysis of Fibrillar Collagens in Lamprey Suggests a Conserved Role in Vertebrate Musculoskeletal Evolution. Frontiers in Cell and Developmental Biology, 2022, 10, 809979.	3.7	2
3	Lamprey lecticans link new vertebrate genes to the origin and elaboration of vertebrate tissues. Developmental Biology, 2021, 476, 282-293.	2.0	5
4	Comparative Approaches in Vertebrate Cartilage Histogenesis and Regulation: Insights from Lampreys and Hagfishes. Diversity, 2021, 13, 435.	1.7	3
5	Evolution of vertebrate gill covers via shifts in an ancient Pou3f3 enhancer. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24876-24884.	7.1	19
6	Evolution of the endothelin pathway drove neural crest cell diversification. Nature, 2020, 585, 563-568.	27.8	30
7	The origin and diversification of the developmental mechanisms that pattern the vertebrate head skeleton. Developmental Biology, 2017, 427, 219-229.	2.0	32
8	Functional constraints on SoxE proteins in neural crest development: The importance of differential expression for evolution of protein activity. Developmental Biology, 2016, 418, 166-178.	2.0	17
9	Embryonic expression of endothelins and their receptors in lamprey and frog reveals stem vertebrate origins of complex Endothelin signaling. Scientific Reports, 2016, 6, 34282.	3.3	23
10	Mesodermal origin of median fin mesenchyme and tail muscle in amphibian larvae. Scientific Reports, 2015, 5, 11428.	3.3	8
11	Ancient origin for the axochord: A putative notochord homolog (Comment on DOI) Tj ETQq1 1 0.784314 rgBT /O	verlock 10 2.5) Țf 50 342
12	Evolution of retinoic acid receptors in chordates: insights from three lamprey species, Lampetra fluviatilis, Petromyzon marinus, and Lethenteron japonicum. EvoDevo, 2015, 6, 18.	3.2	6
13	The deuterostome context of chordate origins. Nature, 2015, 520, 456-465.	27.8	121
14	CRISPR/Cas9-mediated mutagenesis in the sea lamprey, <i>Petromyzon marinus</i> : a powerful tool for understanding ancestral gene functions in vertebrates. Development (Cambridge), 2015, 142, 4180-7.	2.5	61
15	A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements. Developmental Biology, 2015, 397, 293-304.	2.0	40
16	Evolution of the new vertebrate head by co-option of an ancient chordate skeletal tissue. Nature, 2015, 518, 534-537.	27.8	78
17	Roles for FGF in lamprey pharyngeal pouch formation and skeletogenesis highlight ancestral functions in the vertebrate head. Development (Cambridge), 2014, 141, 629-638.	2.5	45
18	Gene regulatory evolution and the origin of macroevolutionary novelties: Insights from the neural crest. Genesis, 2013, 51, 457-470.	1.6	9

2

#	Article	IF	CITATIONS
19	The evolution of the neural crest: new perspectives from lamprey and invertebrate neural crestâ€like cells. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 1-15.	5.9	29
20	An Essential Role of Variant Histone H3.3 for Ectomesenchyme Potential of the Cranial Neural Crest. PLoS Genetics, 2012, 8, e1002938.	3.5	52
21	BMP, Wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border. Development (Cambridge), 2012, 139, 4220-4231.	2.5	90
22	Novel Tfap2-mediated control of <i>soxE</i> expression facilitated the evolutionary emergence of the neural crest. Development (Cambridge), 2012, 139, 720-730.	2.5	51
23	New perspectives on pharyngeal dorsoventral patterning in development and evolution of the vertebrate jaw. Developmental Biology, 2012, 371, 121-135.	2.0	117
24	A maternally established <i><scp>S</scp>ox<scp>B</scp>1/<scp>S</scp>ox<scp>F</scp></i> axis is a conserved feature of chordate germ layer patterning. Evolution & Development, 2012, 14, 104-115.	2.0	14
25	A New Mechanistic Scenario for the Origin and Evolution of Vertebrate Cartilage. PLoS ONE, 2011, 6, e22474.	2.5	49
26	Did duplication of the Tfap2 family facilitate the emergence of neural crest in evolution?. FASEB Journal, 2011, 25, 180.4.	0.5	0
27	Evidence for the prepattern/cooption model of vertebrate jaw evolution. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17262-17267.	7.1	107
28	The Composition and Cellular Sources of CSPGs in the Glial Scar After Spinal Cord Injury in the Lamprey. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	2