
Hermann Hofbauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/631094/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Holistic assessment of oxygen carriers for chemical looping combustion based on laboratory experiments and validation in 80ÂkW pilot plant. Fuel Processing Technology, 2022, 231, 107249.	3.7	7
2	Syngas for biorefineries from thermochemical gasification of lignocellulosic fuels and residues—5Âyears' experience with an advanced dual fluidized bed gasifier design. Biomass Conversion and Biorefinery, 2021, 11, 2405-2442.	2.9	40
3	CO2 gasification of biogenic fuels in a dual fluidized bed reactor system. Biomass Conversion and Biorefinery, 2021, 11, 1101-1116.	2.9	9
4	Fischer-Tropsch products from biomass-derived syngas and renewable hydrogen. Biomass Conversion and Biorefinery, 2021, 11, 2281-2292.	2.9	46
5	Impact of residual fuel ash layers on the catalytic activation of K-feldspar regarding the water–gas shift reaction. Biomass Conversion and Biorefinery, 2021, 11, 3-14.	2.9	8
6	Dual fluidized bed based technologies for carbon dioxide reduction — example hot metal production. Biomass Conversion and Biorefinery, 2021, 11, 159-168.	2.9	8
7	Surface characterization of ash-layered olivine from fluidized bed biomass gasification. Biomass Conversion and Biorefinery, 2021, 11, 29-38.	2.9	12
8	Steam gasification of biomass – Typical gas quality and operational strategies derived from industrial-scale plants. Fuel Processing Technology, 2021, 212, 106609.	3.7	77
9	Evaluation of biomass-based production of below zero emission reducing gas for the iron and steel industry. Biomass Conversion and Biorefinery, 2021, 11, 169-187.	2.9	17
10	Thermodynamic investigation of SNG production based on dual fluidized bed gasification of biogenic residues. Biomass Conversion and Biorefinery, 2021, 11, 95-110.	2.9	10
11	Editorial to the special thematic issue "Advances in Thermo-chemical Gasification of Biomass and Syngas Applications―with selected contributions from the "International Conference on Polygeneration Strategies 2019―(ICPS19). Biomass Conversion and Biorefinery, 2021, 11, 1-2.	2.9	14
12	A review on bed material particle layer formation and its positive influence on the performance of thermo-chemical biomass conversion in fluidized beds. Fuel, 2021, 291, 120214.	3.4	33
13	Tar content and composition during a low-temperature steam gasification of rice husks. Chemical Papers, 2020, 74, 1123-1131.	1.0	3
14	Increased efficiency of dual fluidized bed plants via a novel control strategy. Biomass and Bioenergy, 2020, 141, 105688.	2.9	5
15	Influence of bed materials on the performance of the Nong Bua dual fluidized bed gasification power plant in Thailand. Biomass Conversion and Biorefinery, 2020, , 1.	2.9	1
16	Investigation of the Formation of Coherent Ash Residues during Fluidized Bed Gasification of Wheat Straw Lignin. Energies, 2020, 13, 3935.	1.6	5
17	Investigation of the fate of nitrogen in chemical looping combustion of gaseous fuels using two different oxygen carriers. Energy, 2020, 195, 116926.	4.5	15

Large Scale Biomass Gasification for Electricity and Fuels. , 2019, , 753-775.

0

#	Article	IF	CITATIONS
19	Biomass to Liquid (BtL). , 2019, , 1047-1063.		0
20	A kinetic model of carbonation and calcination of limestone for sorption enhanced reforming of biomass. International Journal of Greenhouse Gas Control, 2019, 90, 102787.	2.3	8
21	Evaluation of a new DCFB reactor system for chemical looping combustion of gaseous fuels. Applied Energy, 2019, 255, 113697.	5.1	6
22	Assessment of correlations between tar and product gas composition in dual fluidized bed steam gasification for online tar prediction. Applied Energy, 2019, 238, 1138-1149.	5.1	40
23	Layer formation on K-feldspar in fluidized bed combustion and gasification of bark and chicken manure. Biomass and Bioenergy, 2019, 127, 105251.	2.9	21
24	Influence of the loop seal fluidization on the operation of a fluidized bed reactor system. Powder Technology, 2019, 352, 422-435.	2.1	6
25	Interrelation of Volatile Organic Compounds and Sensory Properties of Alternative and Torrefied Wood Pellets. Energy & Fuels, 2019, 33, 5270-5281.	2.5	4
26	Influencing the solid fraction distribution in a circulating fluidized bed system using differently shaped internals. Chemical Engineering Research and Design, 2019, 146, 449-463.	2.7	2
27	Layer formation mechanism of K-feldspar in bubbling fluidized bed combustion of phosphorus-lean and phosphorus-rich residual biomass. Applied Energy, 2019, 248, 545-554.	5.1	27
28	Waste gasification processes for SNG production. , 2019, , 105-160.		19
29	Dual fluidized bed gasification of biomass with selective carbon dioxide removal and limestone as bed material: A review. Renewable and Sustainable Energy Reviews, 2019, 107, 212-231.	8.2	77
30	Hydrocarbon production by continuous hydrodeoxygenation of liquid phase pyrolysis oil with biogenous hydrogen rich synthesis gas. Reaction Chemistry and Engineering, 2019, 4, 1195-1207.	1.9	5
31	Fate of sulfur in chemical looping combustion of gaseous fuels using a Perovskite oxygen carrier. Fuel, 2019, 241, 432-441.	3.4	28
32	Fate of sulfur in chemical looping combustion of gaseous fuels using a copper-based oxygen carrier. International Journal of Greenhouse Gas Control, 2018, 71, 86-94.	2.3	34
33	Apparent kinetics of the water-gas-shift reaction in biomass gasification using ash-layered olivine as catalyst. Chemical Engineering Journal, 2018, 346, 113-119.	6.6	18
34	Impact of stage configurations, lean-rich heat exchange and regeneration agents on the energy demand of a multistage fluidized bed TSA CO2 capture process. International Journal of Greenhouse Gas Control, 2018, 72, 82-91.	2.3	24
35	Experimental study of the adsorber performance in a multi-stage fluidized bed system for continuous CO 2 capture by means of temperature swing adsorption. Fuel Processing Technology, 2018, 173, 103-111.	3.7	31
36	Performance of an iron based oxygen carrier in a 120†kWth chemical looping combustion pilot plant. Fuel, 2018, 217, 561-569.	3.4	11

#	Article	IF	CITATIONS
37	Experimental parametric study on product gas and tar composition in dual fluid bed gasification of woody biomass. Biomass and Bioenergy, 2018, 115, 35-44.	2.9	35
38	Hydrogen production within a polygeneration concept based on dual fluidized bed biomass steam gasification. Biomass and Bioenergy, 2018, 111, 320-329.	2.9	31
39	Biokerosene Production from Bio-Chemical and Thermo-Chemical Biomass Conversion and Subsequent Fischer-Tropsch Synthesis. , 2018, , 497-542.		2
40	Influence of drag laws on pressure and bed material recirculation rate in a cold flow model of an 8 MW dual fluidized bed system by means of CPFD. Particuology, 2018, 36, 70-81.	2.0	41
41	Fluid dynamic evaluation of a 10†MW scale reactor design for chemical looping combustion of gaseous fuels. Chemical Engineering Science, 2018, 178, 48-60.	1.9	11
42	Influence of controlled handling of solid inorganic materials and design changes on the product gas quality in dual fluid bed gasification of woody biomass. Applied Energy, 2018, 210, 230-240.	5.1	36
43	Experimental Demonstration and Validation of Hydrogen Production Based on Gasification of Lignocellulosic Feedstock. ChemEngineering, 2018, 2, 61.	1.0	7
44	Techno-economic assessment of biomass-based natural gas substitutes against the background of the EU 2018 renewable energy directive. Biomass Conversion and Biorefinery, 2018, 8, 935-944.	2.9	16
45	Estimation of the solid circulation rate in circulating fluidized bed systems. Powder Technology, 2018, 336, 1-11.	2.1	13
46	Innovative Temperature Swing Adsorption Simulation Model for Biogas Upgrading. Computer Aided Chemical Engineering, 2018, , 1377-1382.	0.3	4
47	The behavior of biomass and char particles in a dual fluidized bed gasification system. Powder Technology, 2018, 338, 887-897.	2.1	20
48	Chemical Looping Combustion Using Two Different Perovskite Based Oxygen Carriers: A Pilot Study. Energy Technology, 2018, 6, 2333-2343.	1.8	16
49	Power to Fuels: Dynamic Modeling of a Slurry Bubble Column Reactor in Lab-Scale for Fischer Tropsch Synthesis under Variable Load of Synthesis Gas. Applied Sciences (Switzerland), 2018, 8, 514.	1.3	16
50	Assessment of zeolite 13X and Lewatit® VP OC 1065 for application in a continuous temperature swing adsorption process for biogas upgrading. Biomass Conversion and Biorefinery, 2018, 8, 379-395.	2.9	32
51	The impact of bed material cycle rate on in-situ CO2 removal for sorption enhanced reforming of different fuel types. Energy, 2018, 162, 35-44.	4.5	26
52	Influence of coated olivine on the conversion of intermediate products from decomposition of biomass tars during gasification. Biomass Conversion and Biorefinery, 2017, 7, 11-21.	2.9	44
53	Behavior of GCMS tar components in a water gas shift unit operated with tar-rich product gas from an industrial scale dual fluidized bed biomass steam gasification plant. Biomass Conversion and Biorefinery, 2017, 7, 69-79.	2.9	8
54	CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8 MW fuel input. Applied Energy, 2017, 190, 408-420.	5.1	136

#	Article	IF	CITATIONS
55	Estimation of solids circulation rate through magnetic tracer tests. Powder Technology, 2017, 316, 650-657.	2.1	14
56	Techno-economic assessment of hydrogen production based on dual fluidized bed biomass steam gasification, biogas steam reforming, and alkaline water electrolysis processes. Energy Conversion and Management, 2017, 145, 278-292.	4.4	85
57	An experimental approach aiming the production of a gas mixture composed of hydrogen and methane from biomass as natural gas substitute in industrial applications. Bioresource Technology, 2017, 237, 39-46.	4.8	10
58	A multi-stage fluidized bed system for continuous CO 2 capture by means of temperature swing adsorption – First results from bench scale experiments. Powder Technology, 2017, 316, 519-527.	2.1	49
59	Optimization of Stage Numbers in a Multistage Fluidized Bed Temperature Swing Adsorption System for CO2 Capture. Energy Procedia, 2017, 114, 2173-2181.	1.8	6
60	The EU-FP7 Project SUCCESS – Scale-up of Oxygen Carrier for Chemical Looping Combustion using Environmentally Sustainable Materials. Energy Procedia, 2017, 114, 395-406.	1.8	21
61	Hydrogen production from biomass: The behavior of impurities over a CO shift unit and a biodiesel scrubber used as a gas treatment stage. Korean Journal of Chemical Engineering, 2017, 34, 2198-2203.	1.2	19
62	Advanced dual fluidized bed steam gasification of wood and lignite with calcite as bed material. Korean Journal of Chemical Engineering, 2017, 34, 2548-2558.	1.2	51
63	Development and experimental validation of a water gas shift kinetic model for Fe-/Cr-based catalysts processing product gas from biomass steam gasification. Biomass Conversion and Biorefinery, 2017, 7, 153-165.	2.9	4
64	Investigations using a cold flow model of char mixing in the gasification reactor of a dual fluidized bed gasification plant. Powder Technology, 2017, 316, 687-696.	2.1	15
65	Performance of a water gas shift unit processing tar-rich product gas from a commercial biomass steam gasification plant operating at partial load. International Journal of Oil, Gas and Coal Technology, 2017, 14, 32.	0.1	1
66	Biomass Gasification for Electricity and Fuels, Large Scale. , 2017, , 1-24.		0
67	Biomass to Liquid (BtL). , 2017, , 1-18.		0
68	Experimental investigations of hydrogen production from CO catalytic conversion of tar rich syngas by biomass gasification. Catalysis Today, 2016, 277, 182-191.	2.2	51
69	Biomass to hydrogen-rich syngas via steam gasification of bio-oil/biochar slurry over LaCo1â^'Cu O3 perovskite-type catalysts. Energy Conversion and Management, 2016, 117, 343-350.	4.4	50
70	2250-hÂlong term operation of a water gas shift pilot plant processing tar-rich product gas from an industrial scale dual fluidized bed biomass steam gasification plant. International Journal of Hydrogen Energy, 2016, 41, 6247-6258.	3.8	27
71	Optimization of a 50ÂMW bubbling fluidized bed biomass combustion chamber by means of computational particle fluid dynamics. Biomass and Bioenergy, 2016, 89, 31-39.	2.9	21
72	Utilization of Effluent Water from Wastewater Treatment as a Flue Gas Scrubbing Liquid in a Sewage Sludge Incineration Plant. Waste and Biomass Valorization, 2016, 7, 125-133.	1.8	0

#	Article	IF	CITATIONS
73	Mechanism of Layer Formation on Olivine Bed Particles in Industrial-Scale Dual Fluid Bed Gasification of Wood. Energy & Fuels, 2016, 30, 7410-7418.	2.5	59
74	Thermal Stability of Bed Particle Layers on Naturally Occurring Minerals from Dual Fluid Bed Gasification of Woody Biomass. Energy & Fuels, 2016, 30, 8277-8285.	2.5	28
75	Introduction and evaluation of a double loop staged fluidized bed system for post-combustion CO 2 capture using solid sorbents in a continuous temperature swing adsorption process. Chemical Engineering Science, 2016, 141, 166-174.	1.9	71
76	Design of a bench scale unit for continuous CO2 capture via temperature swing adsorption—Fluid-dynamic feasibility study. Chemical Engineering Research and Design, 2016, 106, 155-167.	2.7	32
77	Influence of bed material coatings on the water-gas-shift reaction and steam reforming of toluene as tar model compound of biomass gasification. Biomass and Bioenergy, 2016, 89, 40-49.	2.9	59
78	Detailed fluid dynamic investigations of a novel fuel reactor concept for chemical looping combustion of solid fuels. Powder Technology, 2016, 287, 61-69.	2.1	22
79	Vergasung in der GasatmosphÄ r e. , 2016, , 1059-1182.		1
80	Hydrogen from the high temperature water gas shift reaction with an industrial Fe/Cr catalyst using biomass gasification tar rich synthesis gas. Fuel Processing Technology, 2015, 132, 39-48.	3.7	72
81	Investigation of the performance of a copper based oxygen carrier for chemical looping combustion in a 120 kW pilot plant for gaseous fuels. Applied Energy, 2015, 145, 52-59.	5.1	43
82	The different demands of oxygen carriers on the reactor system of a CLC plant – Results of oxygen carrier testing in a 120 kWth pilot plant. Applied Energy, 2015, 157, 323-329.	5.1	53
83	Deposit build-up and ash behavior in dual fluid bed steam gasification of logging residues in an industrial power plant. Fuel Processing Technology, 2015, 139, 33-41.	3.7	36
84	Sorption-enhanced reforming with limestone from iron production. Biomass Conversion and Biorefinery, 2014, 5, 95.	2.9	3
85	Ventilation of Carbon Monoxide from a Biomass Pellet Storage Tank—A Study of the Effects of Variation of Temperature and Cross-ventilation on the Efficiency of Natural Ventilation. Annals of Occupational Hygiene, 2014, 59, 79-90.	1.9	7
86	Influence of ring-type internals on the solids residence time distribution in the fuel reactor of a dual circulating fluidized bed system for chemical looping combustion. Chemical Engineering Research and Design, 2014, 92, 1107-1118.	2.7	36
87	Chemical-looping combustion of raw syngas from biomass steam gasification – Coupled operation of two dual fluidized bed pilot plants. Fuel, 2014, 127, 178-185.	3.4	34
88	Biomass gasification for synthesis gas production and applications of the syngas. Wiley Interdisciplinary Reviews: Energy and Environment, 2014, 3, 343-362.	1.9	192
89	Wood Gas Processing To Generate Pure Hydrogen Suitable for PEM Fuel Cells. ACS Sustainable Chemistry and Engineering, 2014, 2, 2690-2698.	3.2	48
90	Optimization of the Loop Seal in the Counter-Current Reactor of the Dual Circulating Fluidized Bed System for Chemical Looping Processes. Industrial & Engineering Chemistry Research, 2014, 53, 16374-16383.	1.8	5

#	Article	IF	CITATIONS
91	Experimental Study of the Path of Nitrogen in Chemical Looping Combustion Using a Nickel-Based Oxygen Carrier. Energy & Fuels, 2014, 28, 6604-6609.	2.5	4
92	Design of an Inductance Measurement System for Determination of Particle Residence Time in a Dual Circulating Fluidized Bed Cold Flow Model. Industrial & Engineering Chemistry Research, 2013, 52, 10732-10740.	1.8	19
93	Effect of ringâ€ŧype internals on solids distribution in a dual circulating fluidized bed system—cold flow model study. AICHE Journal, 2013, 59, 3612-3623.	1.8	27
94	Gasification of wood in a dual fluidized bed gasifier: Influence of fuel feeding on process performance. Chemical Engineering Science, 2013, 90, 284-298.	1.9	74
95	Measurement of ferromagnetic particle concentration for characterization of fluidized bed fluid-dynamics. Powder Technology, 2013, 239, 147-154.	2.1	14
96	Reactivity tests of the water–gas shift reaction on fresh and used fluidized bed materials from industrial DFB biomass gasifiers. Biomass and Bioenergy, 2013, 55, 227-233.	2.9	21
97	Next Scale Chemical Looping Combustion: process Integration and Part Load Investigations for a 10MW Demonstration Unit. Energy Procedia, 2013, 37, 635-644.	1.8	20
98	The mechanism of bed material coating in dual fluidized bed biomass steam gasification plants and its impact on plant optimization. Powder Technology, 2013, 245, 94-104.	2.1	61
99	Solids residence time distribution in the secondary reactor of a dual circulating fluidized bed system. Chemical Engineering Science, 2013, 104, 269-284.	1.9	19
100	Gasification of lignite in a dual fluidized bed gasifier — Influence of bed material particle size and the amount of steam. Fuel Processing Technology, 2013, 111, 1-13.	3.7	55
101	Performance improvement of dual fluidized bed gasifiers by temperature reduction: The behavior of tar species in the product gas. Fuel, 2013, 108, 534-542.	3.4	56
102	Behavior of Inorganic Matter in a Dual Fluidized Steam Gasification Plant. Energy & Fuels, 2013, 27, 3316-3331.	2.5	21
103	Cogasification of Polyethylene and Lignite in a Dual Fluidized Bed Gasifier. Industrial & Engineering Chemistry Research, 2013, 52, 4360-4371.	1.8	27
104	Co-Gasification of Wood and Lignite in a Dual Fluidized Bed Gasifier. Energy & Fuels, 2013, 27, 919-931.	2.5	46
105	Co-gasification of Plastics and Biomass in a Dual Fluidized-Bed Steam Gasifier: Possible Interactions of Fuels. Energy & Fuels, 2013, 27, 3261-3273.	2.5	66
106	Gasification of Lowâ€Grade Coal in a Dual Fluidizedâ€Bed Steam Gasifier. Energy Technology, 2013, 1, 253-264.	1.8	12
107	Cold flow model investigations of the countercurrent flow of a dual circulating fluidized bed gasifier. Biomass Conversion and Biorefinery, 2012, 2, 229-244.	2.9	42
108	Influence of operating conditions on the performance of biomass-based Fischer–Tropsch synthesis. Biomass Conversion and Biorefinery, 2012, 2, 253-263.	2.9	37

#	Article	IF	CITATIONS
109	The Effect of Bed Particle Inventories with Different Particle Sizes in a Dual Fluidized Bed Pilot Plant for Biomass Steam Gasification. Industrial & Engineering Chemistry Research, 2012, 51, 10492-10502.	1.8	25
110	Mechanism of Tar Generation during Fluidized Bed Gasification and Low Temperature Pyrolysis. Industrial & Engineering Chemistry Research, 2012, 51, 13001-13007.	1.8	34
111	Synergetic Utilization of Renewable and Fossil Fuels: Dual Fluidized Bed Steam Co-gasification of Coal and Wood. APCBEE Procedia, 2012, 1, 136-140.	0.5	19
112	Rotary kiln pyrolysis of straw and fermentation residues in a 3MW pilot plant – Influence of pyrolysis temperature on pyrolysis product performance. Journal of Analytical and Applied Pyrolysis, 2012, 97, 1-10.	2.6	54
113	Investigations on Hydrotreating of Fischer Tropsch-Biowaxes for Generation of Bio-Products from Lignocellulosic Biomass. Modern Applied Science, 2012, 6, .	0.4	3
114	Variation of feedstock in a dual fluidized bed steam gasifier—influence on product gas, tar content, and composition. Environmental Progress and Sustainable Energy, 2012, 31, 205-215.	1.3	67
115	The positive effects of bed material coating on tar reduction in a dual fluidized bed gasifier. Fuel, 2012, 95, 553-562.	3.4	143
116	Investigations on Bed Material Changes in a Dual Fluidized Bed Steam Gasification Plant in Güssing, Austria. Energy & Fuels, 2011, 25, 3793-3798.	2.5	106
117	Chemical looping combustion for power generation—Concept study for a 10MWth demonstration plant. International Journal of Greenhouse Gas Control, 2011, 5, 1199-1205.	2.3	24
118	Comparison of the performance behaviour of silica sand and olivine in a dual fluidised bed reactor system for steam gasification of biomass at pilot plant scale. Chemical Engineering Journal, 2011, 175, 468-483.	6.6	161
119	Hydrogen from biomass: large-scale hydrogen production based on a dual fluidized bed steam gasification system. Biomass Conversion and Biorefinery, 2011, 1, 55-61.	2.9	33
120	Catalysts for dual fluidised bed biomass gasification—an experimental study at the pilot plant scale. Biomass Conversion and Biorefinery, 2011, 1, 63-74.	2.9	23
121	Steam gasification of various feedstocks at a dual fluidised bed gasifier: Impacts of operation conditions and bed materials. Biomass Conversion and Biorefinery, 2011, 1, 39-53.	2.9	171
122	Gasification of waste wood and bark in a dual fluidized bed steam gasifier. Biomass Conversion and Biorefinery, 2011, 1, 91-97.	2.9	34
123	BioSNG—process simulation and comparison with first results from a 1-MW demonstration plant. Biomass Conversion and Biorefinery, 2011, 1, 111-119.	2.9	63
124	Cold Flow Model Study of an Oxyfuel Combustion Pilot Plant. Chemical Engineering and Technology, 2011, 34, 2091-2098.	0.9	8
125	Application of a detailed mathematical model to the gasifier unit of the dual fluidized bed gasification plant. Biomass and Bioenergy, 2011, 35, 2491-2498.	2.9	42
126	Co-gasification of coal and wood in a dual fluidized bed gasifier. Fuel, 2011, 90, 2404-2412.	3.4	114

#	Article	IF	CITATIONS
127	Syngas and a separate nitrogen/argon stream via chemical looping reforming – A 140kW pilot plant study. Fuel, 2010, 89, 1249-1256.	3.4	130
128	Operating experience with chemical looping combustion in a 120kW dual circulating fluidized bed (DCFB) unit. International Journal of Greenhouse Gas Control, 2010, 4, 180-185.	2.3	146
129	A novel dual circulating fluidized bed system for chemical looping processes. AICHE Journal, 2009, 55, 3255-3266.	1.8	160
130	Tar content and composition in producer gas of fluidized bed gasification of wood—Influence of temperature and pressure. Environmental Progress and Sustainable Energy, 2009, 28, 372-379.	1.3	96
131	H2 rich product gas by steam gasification of biomass with in situ CO2 absorption in a dual fluidized bed system of 8AMW fuel input. Fuel Processing Technology, 2009, 90, 914-921.	3.7	253
132	Modeling of a 120kW chemical looping combustion reactor system using a Ni-based oxygen carrier. Chemical Engineering Science, 2009, 64, 99-108.	1.9	74
133	Performance of a NiO-based oxygen carrier for chemical looping combustion and reforming in a 120 kW unit. Energy Procedia, 2009, 1, 19-25.	1.8	57
134	Natural minerals as oxygen carriers for chemical looping combustion in a dual circulating fluidized bed system. Energy Procedia, 2009, 1, 27-34.	1.8	125
135	Operating experience with chemical looping combustion in a 120 kW dual circulating fluidized bed (DCFB) unit. Energy Procedia, 2009, 1, 1465-1472.	1.8	48
136	Comparison of Two Ni-Based Oxygen Carriers for Chemical Looping Combustion of Natural Gas in 140 kW Continuous Looping Operation. Industrial & Engineering Chemistry Research, 2009, 48, 5542-5547.	1.8	103
137	Characterization of Chemical Looping Pilot Plant Performance via Experimental Determination of Solids Conversion. Energy & Fuels, 2009, 23, 1450-1455.	2.5	44
138	Development of catalytic tar decomposition downstream from a dual fluidized bed biomass steam gasifier. Powder Technology, 2008, 180, 9-16.	2.1	158
139	Catalytic steam reforming of model biogas. Fuel, 2008, 87, 701-706.	3.4	115
140	Experimental investigation of a 125ÅkW twin-fire fixed bed gasification pilot plant and comparison to the results of a 2 MW combined heat and power plant (CHP). Fuel Processing Technology, 2008, 89, 90-102.	3.7	43
141	Model for biomass char combustion in the riser of a dual fluidized bed gasification unit: Part II — Model validation and parameter variation. Fuel Processing Technology, 2008, 89, 660-666.	3.7	10
142	Model for biomass char combustion in the riser of a dual fluidized bed gasification unit: Part 1 — Model development and sensitivity analysis. Fuel Processing Technology, 2008, 89, 651-659.	3.7	33
143	H2 rich syngas by selective CO2 removal from biomass gasification in a dual fluidized bed system — Process modelling approach. Fuel Processing Technology, 2008, 89, 1207-1217.	3.7	117
144	Experimental Study of Model Biogas Catalytic Steam Reforming: 1. Thermodynamic Optimization. Energy & Fuels, 2008, 22, 4182-4189.	2.5	54

#	Article	IF	CITATIONS
145	Experimental Study of Model Biogas Catalytic Steam Reforming: 2. Impact of Sulfur on the Deactivation and Regeneration of Ni-Based Catalysts. Energy & Fuels, 2008, 22, 4190-4195.	2.5	84
146	Development and Application of a Simulation Tool for Biomass Gasification Based Processes. International Journal of Chemical Reactor Engineering, 2008, 6, .	0.6	29
147	Fluidized Bed Steam Gasification of Solid Biomass - Performance Characteristics of an 8 MWth Combined Heat and Power Plant. International Journal of Chemical Reactor Engineering, 2007, 5, .	0.6	31
148	In-Situ CO2-Absorption in a Dual Fluidized Bed Biomass Steam Gasifier to Produce a Hydrogen Rich Syngas. International Journal of Chemical Reactor Engineering, 2007, 5, .	0.6	52
149	Model development and validation: Co-combustion of residual char, gases and volatile fuels in the fast fluidized combustion chamber of a dual fluidized bed biomass gasifier. Fuel, 2007, 86, 2687-2695.	3.4	50
150	Chemical-looping combustion using syngas as fuel. International Journal of Greenhouse Gas Control, 2007, 1, 158-169.	2.3	139
151	Small-Scale Pellet Boiler with Thermoelectric Generator. , 2006, , .		19
152	Fluidized Bed Steam Gasification of Solid Biomass: Analysis and Optimization of Plant Operation Using Process Simulation. , 2005, , 763.		11
153	Design and Fluid Dynamic Analysis of a Bench-Scale Combustion System with CO2Separationâ^'Chemical-Looping Combustion. Industrial & Engineering Chemistry Research, 2005, 44, 546-556.	1.8	104
154	Removal of NH3from Biomass Gasification Producer Gas by Water Condensing in an Organic Solvent Scrubber. Industrial & Engineering Chemistry Research, 2005, 44, 1576-1584.	1.8	55
155	Chemical-Looping Combustion—Reactor Fluidization Studies and Scale-Up Criteria. , 2005, , 605-623.		3
156	In-Bed Catalytic Tar Reduction in a Dual Fluidized Bed Biomass Steam Gasifier. Industrial & Engineering Chemistry Research, 2004, 43, 1634-1640.	1.8	230
157	Optimisation of ceramic heat storage of stoves. Energy and Buildings, 2003, 35, 1121-1128.	3.1	3
158	Particle Residence Time and Particle Mixing in a Scaled Internal Circulating Fluidized Bed. Industrial & Engineering Chemistry Research, 2002, 41, 2637-2645.	1.8	9
159	In-situ laser spectroscopy of CO, Ch4, and H2O in a particle laden laboratory-scale fluidized bed combustor. Thermal Science, 2002, 6, 13-27.	0.5	9
160	NO x and N2O Formation Mechanisms—A Detailed Chemical Kinetic Modeling Study on a Single Fuel Particle in a Laboratory-Scale Fluidized Bed. Journal of Energy Resources Technology, Transactions of the ASME, 2001, 123, 228-235.	1.4	23
161	Novel scaling parameter for circulating fluidized beds. AICHE Journal, 2001, 47, 582-589.	1.8	26
162	Decomposition of nitrous oxide at medium temperatures. Combustion and Flame, 2000, 120, 427-438.	2.8	53

#	Article	IF	CITATIONS
163	The NO and N ₂ O formation mechanism under circulating fluidized bed combustor conditions: From the single particle to the pilotâ€scale. Canadian Journal of Chemical Engineering, 1999, 77, 275-283.	0.9	29
164	Temperatures in a fuel particle burning in a fluidized bed: The effect of drying, devolatilization, and char combustion. Combustion and Flame, 1997, 108, 302-314.	2.8	65
165	The NO and N2O formation mechanism during devolatilization and char combustion under fluidized-bed conditions. Proceedings of the Combustion Institute, 1996, 26, 3325-3334.	0.3	96
166	Internally circulating fluidized bed for continuous adsorption and desorption. Chemical Engineering and Processing: Process Intensification, 1995, 34, 521-527.	1.8	21
167	Influence of Oxygen Availability on off-Gassing Rates of Emissions from Stored Wood Pellets. Energy & Fuels, 0, , .	2.5	7
168	Sorption Enhanced Reforming of Different Fuel Types for the Production of a Hydrogen-Rich Reduction Gas. , 0, , .		2
169	Development of an Efficient Heat Balance Concept for a TSA-Process Considering Heat-Pump Integration. , 0, , .		1
170	Waste Gasification with an Advanced 100 kW Dual Fluidized Bed Gasifier. , 0, , .		1
171	Integration of dual fluidized bed steam gasification into the pulp and paper industry. Biomass Conversion and Biorefinery, 0, , 1.	2.9	1