
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6310631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of fentanyl overdose-induced muscle rigidity and dexmedetomidine on respiratory mechanics and pulmonary gas exchange in sedated rats. Journal of Applied Physiology, 2022, 132, 1407-1422.	1.2	8
2	Revisiting the effects of the reciprocal function between alveolar ventilation and CO ₂ partial pressure (PACO ₂) on PACO ₂ homeostasis at rest and in exercise. Journal of Applied Physiology, 2022, , .	1.2	3
3	Respiratory effects of low and high doses of fentanyl in control and β-arrestin 2-deficient mice. Journal of Neurophysiology, 2021, 125, 1396-1407.	0.9	9
4	Rapid Glomerulotubular Nephritis as an Initial Presentation of a Lethal Diquat Ingestion. Case Reports in Nephrology, 2021, 2021, 1-3.	0.2	7
5	Nondyspnogenic respiratory failure in patients with COVID-19: another example of myth-building in this new disease?. Journal of Applied Physiology, 2021, 131, 1134-1135.	1.2	1
6	Hydrogen sulfide intoxication induced brain injury and methylene blue. Neurobiology of Disease, 2020, 133, 104474.	2.1	35
7	Exchange of Views rebuttal: Reply to White and Bruce. Experimental Physiology, 2020, 105, 2254-2255.	0.9	0
8	The ventilatory component of the muscle metaboreflex: catch me if you can!. Experimental Physiology, 2020, 105, 2246-2249.	0.9	5
9	Share Patients, Not Ventilators. Chest, 2020, 158, 2235-2236.	0.4	3
10	INTRATRACHEAL SALINE BOLUS INCREASES SURVIVABILITY IN RABBITS EXPOSED TO LETHAL DOSE OF INHALED HYDROGEN SULFIDE. Chest, 2020, 158, A1864-A1865.	0.4	0
11	Azure B as a novel cyanide antidote: Preclinical in-vivo studies. Toxicology Reports, 2020, 7, 1459-1464.	1.6	8
12	Antidotal effects of methylene blue against cyanide neurological toxicity: <i>in vivo</i> and <i>in vitro</i> studies. Annals of the New York Academy of Sciences, 2020, 1479, 108-121.	1.8	6
13	A plea for avoiding systematic intubation in severely hypoxemic patients with COVID-19-associated respiratory failure. Critical Care, 2020, 24, 337.	2.5	30
14	Evidence for the emergence of an opioidâ€resistant respiratory rhythm following fentanyl overdose. Respiratory Physiology and Neurobiology, 2020, 277, 103428.	0.7	9
15	Mechanics of Breathing and Gas Exchange in Mechanically Ventilated Patients with COVID-19–associated Respiratory Failure. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 626-628.	2.5	4
16	Severe Hypoxemia Prevents Spontaneous and Naloxone-induced Breathing Recovery after Fentanyl Overdose in Awake and Sedated Rats. Anesthesiology, 2020, 132, 1138-1150.	1.3	8
17	HYPOXEMIA PREVENTS RECOVERY FOLLOWING FENTANYL OVERDOSE IN AWAKE AND SEDATED RATS. FASEB Journal, 2020, 34, 1-1.	0.2	0
18	OPIOIDâ€RESISTANT RESPIRATORY RHYTHM SPONTANEOUSLY RESCUING UNâ€ANESTHETIZED RATS FOLLOWIN FENTANYL OVERDOSE INDUCED APNEA. FASEB Journal, 2020, 34, 1-1.	IG _{0.2}	0

#	Article	IF	CITATIONS
19	The Central Role of Protein Kinase C Epsilon in Cyanide Cardiotoxicity and Its Treatment. Toxicological Sciences, 2019, 171, 247-257.	1.4	6
20	Hydrogen Sulfide Toxicity: Mechanism of Action, Clinical Presentation, and Countermeasure Development. Journal of Medical Toxicology, 2019, 15, 287-294.	0.8	62
21	Antidotal Effects of the Phenothiazine Chromophore Methylene Blue Following Cyanide Intoxication. Toxicological Sciences, 2019, 170, 82-94.	1.4	10
22	Particle size, distribution, and behavior of talc preparations. Current Opinion in Pulmonary Medicine, 2019, 25, 374-379.	1.2	3
23	1179: THE VITAMIN B12 ANALOG COBINAMIDE: EFFICACY EVALUATION AS A MULTICHEMICAL AGENT ANTIDOTE. Critical Care Medicine, 2019, 47, 566-566.	0.4	Ο
24	Methylene Blue Administration During and After Life-Threatening Intoxication by Hydrogen Sulfide: Efficacy Studies in Adult Sheep and Mechanisms of Action. Toxicological Sciences, 2019, 168, 443-459.	1.4	17
25	Intramuscular cobinamide versus saline for treatment of severe hydrogen sulfide toxicity in swine. Clinical Toxicology, 2019, 57, 189-196.	0.8	12
26	Revisiting the physiological effects of methylene blue as a treatment of cyanide intoxication. Clinical Toxicology, 2018, 56, 828-840.	0.8	18
27	Description of Particle Size, Distribution, and Behavior of Talc Preparations Commercially Available Within the United States. Journal of Bronchology and Interventional Pulmonology, 2018, 25, 25-30.	0.8	8
28	On the Efficacy of Cardio-Pulmonary Resuscitation and Epinephrine Following Cyanide- and H2S Intoxication-Induced Cardiac Asystole. Cardiovascular Toxicology, 2018, 18, 436-449.	1.1	6
29	Methylene Blue Counteracts H2S-Induced Cardiac Ion Channel Dysfunction and ATP Reduction. Cardiovascular Toxicology, 2018, 18, 407-419.	1.1	14
30	EFFICACY OF INTRAMUSCULAR COBINAMIDE TREATMENT OF SEVERE INHALED HYDROGEN SULFIDE POISONING IN A RABBIT MODEL. Chest, 2018, 154, 323A.	0.4	0
31	BILIOTHORAX SECONDARY TO INCIDENTAL BOCHDALEK HERNIA: AN UNEXPECTED DETOUR. Chest, 2018, 154, 501A.	0.4	0
32	Methylene blue counteracts cyanide cardiotoxicity: cellular mechanisms. Journal of Applied Physiology, 2018, 124, 1164-1176.	1.2	17
33	Hydrogen Sulfide Specifically Alters NAD(P)H Quinone Dehydrogenase 1 (NQO1) Olfactory Neurons in the Rat. Neuroscience, 2017, 366, 105-112.	1.1	5
34	Circulatory Failure During Noninhaled Forms of Cyanide Intoxication. Shock, 2017, 47, 352-362.	1.0	10
35	H ₂ S concentrations in the heart after acute H ₂ S administration: methodological and physiological considerations. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1445-H1458.	1.5	13
36	Tension Pneumopericardium During Peroral Endoscopic Myotomy: A Case Report and Review of Literature. Chest, 2016, 150, 265A.	0.4	2

#	Article	IF	CITATIONS
37	Is exogenous hydrogen sulfide a relevant tool to address physiological questions on hydrogen sulfide?. Respiratory Physiology and Neurobiology, 2016, 229, 5-10.	0.7	11
38	On the inaccuracy of breath-by-breath metabolic gas exchange systems. Respiratory Physiology and Neurobiology, 2016, 233, 14-16.	0.7	5
39	Methylene blue counteracts H ₂ S toxicity-induced cardiac depression by restoring L-type Ca channel activity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R1030-R1044.	0.9	25
40	Developing effective countermeasures against acute hydrogen sulfide intoxication: challenges and limitations. Annals of the New York Academy of Sciences, 2016, 1374, 29-40.	1.8	33
41	Sulfide Intoxication-Induced Circulatory Failure is Mediated by a Depression in Cardiac Contractility. Cardiovascular Toxicology, 2016, 16, 67-78.	1.1	24
42	Immediate and Long-Term Outcome of Acute H2S Intoxication Induced Coma in Unanesthetized Rats: Effects of Methylene Blue. PLoS ONE, 2015, 10, e0131340.	1.1	28
43	Persistent reduced oxygen requirement following blood transfusion during recovery from hemorrhagic shock. Respiratory Physiology and Neurobiology, 2015, 215, 39-46.	0.7	3
44	Whether to Breathe Fast or Not: What Is Wrong with Breathing Control in Patients with Mild Obstructive Pulmonary Disease?. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 1524-1525.	2.5	1
45	Last Word on Viewpoint: Precedence and autocracy in breathing control. Journal of Applied Physiology, 2015, 118, 1560-1560.	1.2	1
46	Precedence and autocracy in breathing control. Journal of Applied Physiology, 2015, 118, 1553-1556.	1.2	9
47	High-dose hydroxocobalamin administered after H ₂ S exposure counteracts sulfide-poisoning-induced cardiac depression in sheep. Clinical Toxicology, 2015, 53, 28-36.	0.8	37
48	Cardiogenic shock induced reduction in cellular O ₂ delivery as a hallmark of acute H ₂ S intoxication. Clinical Toxicology, 2015, 53, 416-417.	0.8	8
49	H ₂ S induced coma and cardiogenic shock in the rat: Effects of phenothiazinium chromophores. Clinical Toxicology, 2015, 53, 525-539.	0.8	24
50	Noninvasive Positive Pressure Ventilation in Acute Respiratory Failure. , 2015, , 247-269.		0
51	Effects of Hydrogen Sulfide on Circulation. FASEB Journal, 2015, 29, 640.1.	0.2	Ο
52	Tracking pulmonary gas exchange by breathing control during exercise: role of muscle blood flow. Journal of Physiology, 2014, 592, 453-461.	1.3	19
53	In Vivo Interactions Between Cobalt or Ferric Compounds and the Pools of Sulphide in the Blood During and After H2S Poisoning. Toxicological Sciences, 2014, 141, 493-504.	1.4	33
54	Oxygen-related chemoreceptor drive to breathe during H2S infusion. Respiratory Physiology and Neurobiology, 2014, 201, 24-30.	0.7	4

#	Article	IF	CITATIONS
55	Are H ₂ S-trapping compounds pertinent to the treatment of sulfide poisoning?. Clinical Toxicology, 2014, 52, 566-566.	0.8	11
56	Fate of intracellular H2S/HSâ^' and metallo-proteins. Respiratory Physiology and Neurobiology, 2013, 188, 229-230.	0.7	15
57	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si47.gif" overflow="scroll"> <mml:mrow><mml:msub><mml:mover accent="true"><mml:mi>V</mml:mi><mml:mo>Ë™</mml:mo><mml:mrow><mml:msub><mml:m during hemorrhage-induced O2 deficit in the anesthetized rat. Respiratory Physiology and</mml:m </mml:msub></mml:mrow></mml:mover </mml:msub></mml:mrow>	text ⁵ O <td>nml:mtext></td>	nml:mtext>
58	Neurobiology, 2013, 186, 87-94. Ferric Iron and Cobalt (III) Compounds to Safely Decrease Hydrogen Sulfide in the Body?. Antioxidants and Redox Signaling, 2013, 19, 510-516.	2.5	29
59	Tissue hypoxia during acute hemorrhage. Critical Care, 2013, 17, 423.	2.5	1
60	H ₂ S concentrations in the arterial blood during H ₂ S administration in relation to its toxicity and effects on breathing. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R630-R638.	0.9	48
61	A mouse is not a rat is not a man: species-specific metabolic responses to sepsis - a nail in the coffin of murine models for critical care research?. Intensive Care Medicine Experimental, 2013, 1, 26.	0.9	32
62	Periodic Breathing With No Heart Beat. Chest, 2013, 144, 1378-1380.	0.4	4
63	Very low levels of H2S in the blood are needed to affect the medullary respiratory neurons and the arterial chemoreceptors inâ€vivo. FASEB Journal, 2013, 27, .	0.2	0
64	Evidence Against The Role Of The Arterial Chemoreflex In The Generation Of Cheyne-Stokes Breathing In Severe Heart Failure. , 2012, , .		0
65	Oxygen deficit and H2S in hemorrhagic shock in rats. Critical Care, 2012, 16, R178.	2.5	25
66	Ventilatory and metabolic effects of exogenous hydrogen sulfide. Respiratory Physiology and Neurobiology, 2012, 184, 170-177.	0.7	30
67	Control of Breathing During Exercise. , 2012, 2, 743-777.		168
68	Metabolic and ventilatory depression in rat. Journal of Applied Physiology, 2012, 113, 514-514.	1.2	0
69	Alveolar CO2 Decreases Dramatically At The Onset Of Cardiac Arrest (CA). , 2012, , .		0
70	Negative Interaction Between Hypoxia And Hydrogen Sulfide On The Arterial Chemoreflex. , 2012, , .		0
71	Slow Conducting Diaphragmatic Afferent Fibers Produce Dyspnea In Humans. , 2012, , .		0
72	Neck Pain and Dyspnea: Lessons from a Patient with Zoster. Pain Medicine, 2012, 13, 1250-1252.	0.9	0

#	Article	IF	CITATIONS
73	Hypocapnia-dependent facilitation of augmented breaths: Observations in awake vs. anesthetized rats. Respiratory Physiology and Neurobiology, 2012, 180, 105-111.	0.7	6
74	Arterial blood acidity and control of breathing during exercise. Respiratory Physiology and Neurobiology, 2012, 180, 173-174.	0.7	0
75	Breathing during cardiac arrest following exercise: A new function of the respiratory system?. Respiratory Physiology and Neurobiology, 2012, 181, 220-227.	0.7	4
76	Inhibitory effects of hyperoxia and methemoglobinemia on H2S induced ventilatory stimulation in the rat. Respiratory Physiology and Neurobiology, 2012, 181, 326-334.	0.7	16
77	The effects of two common injectable laboratory anesthetics on the regulation of augmented (â€~sigh') breaths. FASEB Journal, 2012, 26, 704.22.	0.2	0
78	POSTâ€EXERCISE HYPERPNEA AND CARDIAC ASYSTOLE. FASEB Journal, 2012, 26, 1071.16.	0.2	0
79	Initiating inspiration outside the medulla does produce eupneic breathing. Journal of Applied Physiology, 2011, 110, 854-856.	1.2	5
80	The "other―respiratory effect of opioids: suppression of spontaneous augmented ("sighâ€) breaths. Journal of Applied Physiology, 2011, 111, 1296-1303.	1.2	19
81	Murine models in critical care research*. Critical Care Medicine, 2011, 39, 2290-2293.	0.4	30
82	Hydrogen sulfide oxidation and the arterial chemoreflex: Effect of methemoglobin. Respiratory Physiology and Neurobiology, 2011, 177, 273-283.	0.7	33
83	Sulfide and methemoglobinemia. Respiratory Physiology and Neurobiology, 2011, 179, 119-120.	0.7	7
84	Hypoxia-induced arterial chemoreceptor stimulation and Hydrogen sulfide: Too much or too little?. Respiratory Physiology and Neurobiology, 2011, 179, 97-102.	0.7	19
85	Last Word on Viewpoint: Initiating inspiration outside the medulla does produce eupneic breathing. Journal of Applied Physiology, 2011, 110, 859-859.	1.2	0
86	H1N1influenza Virus Revealed By Diffuse Alveolar Hemorrhage. , 2010, , .		0
87	Breathing requirement and metabolic rate during cardiopulmonary resuscitation: Cardiac arrest during exercise. Critical Care Medicine, 2010, 38, 1760-1761.	0.4	1
88	Vancomycin Induced DRESS Syndrome: An Unusual Cause Of Life Threatening Stridor And Bronchoconstriction. , 2010, , .		1
89	Breathing patterns during cardiac arrest. Journal of Applied Physiology, 2010, 109, 405-411.	1.2	24
90	Control of breathing during acute change in cardiac preload in a patient with partial cardiopulmonary bypass. Respiratory Physiology and Neurobiology, 2010, 170, 37-43.	0.7	2

#	Article	IF	CITATIONS
91	The hypoxia-induced facilitation of augmented breaths is suppressed by the common effect of carbonic anhydrase inhibition. Respiratory Physiology and Neurobiology, 2010, 171, 201-211.	0.7	20
92	Respiratory effects of changing the volume load imposed on the peripheral venous system. Respiratory Physiology and Neurobiology, 2010, 171, 175-180.	0.7	7
93	Hypocapnia increases the prevalence of hypoxia-induced augmented breaths. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R334-R344.	0.9	29
94	Acetazolamide suppresses the prevalence of augmented breaths during exposure to hypoxia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R370-R381.	0.9	16
95	Venous pressure and dyspnea on exertion in cardiac failure: Was Tinsley Randolph Harrison right?. Respiratory Physiology and Neurobiology, 2009, 167, 101-106.	0.7	5
96	Comparison of the metabolic and ventilatory response to hypoxia and H2S in unsedated mice and rats. Respiratory Physiology and Neurobiology, 2009, 167, 316-322.	0.7	53
97	Control of breathing and volitional respiratory rhythm in humans. Journal of Applied Physiology, 2009, 106, 904-910.	1.2	23
98	CO2 status as a controller of blood flow redistribution and autoâ€resuscitation during anoxiaâ€induced apnea in the sheep. FASEB Journal, 2009, 23, 1010.12.	0.2	0
99	Respiratory alkalosis is the determinant of the increased production of augmented breaths triggered by hypoxia. FASEB Journal, 2009, 23, 1010.13.	0.2	0
100	H2S induced hypometabolism in mice is missing in sedated sheep. Respiratory Physiology and Neurobiology, 2008, 160, 109-115.	0.7	91
101	Control of breathing during cortical substitution of the spontaneous automatic respiratory rhythm. Respiratory Physiology and Neurobiology, 2007, 159, 211-218.	0.7	13
102	Interactions between volitional and automatic breathing during respiratory apraxia. Respiratory Physiology and Neurobiology, 2006, 152, 169-175.	0.7	23
103	Theories on the nature of the coupling between ventilation and gas exchange during exercise. Respiratory Physiology and Neurobiology, 2006, 151, 267-279.	0.7	65
104	Control of arterialPCO2by somatic afferents in sheep. Journal of Physiology, 2005, 569, 975-987.	1.3	26
105	Sensing vascular distension in skeletal muscle by slow conducting afferent fibers: neurophysiological basis and implication for respiratory control. Journal of Applied Physiology, 2004, 96, 407-418.	1.2	92
106	The control of ventilation is dissociated from locomotion during walking in sheep. Journal of Physiology, 2004, 559, 315-325.	1.3	20
107	Isolation of the Arterial Supply to the Carotid and Central Chemoreceptors in the Sheep. Experimental Physiology, 2003, 88, 581-594.	0.9	10
108	Effects of body position on the ventilatory response following an impulse exercise in humans. Journal of Applied Physiology, 2002, 92, 1423-1433.	1.2	13

#	Article	IF	CITATIONS
109	Control of breathing and muscle perfusion in humans. Experimental Physiology, 2001, 86, 759-768.	0.9	12
110	Corticospinal pathway and exercise hyperpnea: lessons from a patient with Arnold Chiari malformation. Respiration Physiology, 2000, 123, 13-22.	2.8	8
111	Responses of group III and IV muscle afferents to distension of the peripheral vascular bed. Journal of Applied Physiology, 1999, 87, 545-553.	1.2	100
112	Heart rate dynamics during sinusoidal exercise: comparison of the control system between children and adults. Computer Methods and Programs in Biomedicine, 1999, 60, 35-44.	2.6	5
113	The VË™ <scp>o</scp> ₂ slow component for severe exercise depends on type of exercise and is not correlated with time to fatigue. Journal of Applied Physiology, 1998, 85, 2118-2124.	1.2	100