Tianbo Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6310523/publications.pdf

Version: 2024-02-01

201 papers

8,930 citations

52 h-index 85 g-index

225 all docs

225
docs citations

times ranked

225

6237 citing authors

#	Article	IF	Citations
1	Abnormal Association between Metalâ^'Organic Cages and Counterions Regulated by the Hydration Shells. Chemistry - A European Journal, 2022, , .	1.7	O
2	Cost-effective polymer-based membranes for drinking water purification. Giant, 2022, 10, 100099.	2. 5	26
3	Molecular Geometryâ€Directed Selfâ€Recognition in the Selfâ€Assembly of Giant Amphiphiles. Macromolecular Rapid Communications, 2022, , 2200216.	2.0	1
4	The Role of Electrostatic Interaction in the Self-assembly of Macroions. , 2022, , 55-84.		1
5	Side Group of Hydrophobic Amino Acids Controls Chiral Discrimination among Chiral Counterions and Metal–Organic Cages. Nano Letters, 2022, 22, 4421-4428.	4.5	5
6	Accurate Determination of the Quantity and Spatial Distribution of Counterions around a Spherical Macroion. Angewandte Chemie, 2021, 133, 5897-5901.	1.6	2
7	Accurate Determination of the Quantity and Spatial Distribution of Counterions around a Spherical Macroion. Angewandte Chemie - International Edition, 2021, 60, 5833-5837.	7.2	14
8	Screw dislocation-induced pyramidal crystallization of dendron-like macromolecules featuring asymmetric geometry. Chemical Science, 2021, 12, 12130-12137.	3.7	4
9	Supramolecular structures based on metal-organic cages. Giant, 2021, 5, 100050.	2.5	21
10	Standalone 2-D Nanosheets and the Consequent Hydrogel and Coacervate Phases Formed by 2.5 nm Spherical U ₆₀ Molecular Clusters in Dilute Aqueous Solution. Journal of Physical Chemistry B, 2021, 125, 12392-12397.	1,2	4
11	Polyoxometalate-Based Metal-Organic Framework Fractal Crystals. Matter, 2020, 2, 250-260.	5.0	46
12	Ion-pairs of structurally related polyoxotantalate clusters and divalent metal cations. Journal of Coordination Chemistry, 2020, 73, 2579-2589.	0.8	4
13	Rational Control of Selfâ€Recognition of Macroionic γâ€Cyclodextrin by Hostâ€Guest Interaction with Superâ€Chaotropic Borate Cluster Ions. ChemPlusChem, 2020, 85, 2316-2319.	1.3	1
14	Dual-site catalysis for sustainable polymers to replace current commodity polymers – carbonylative copolymerization of ethylene, ethylene oxide, and tetrahydrofuran. Chemical Communications, 2020, 56, 15341-15344.	2.2	4
15	Nanosheets and Hydrogels Formed by 2 nm Metal–Organic Cages with Electrostatic Interaction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 56310-56318.	4.0	11
16	Strong Enantiomeric Preference on the Macroion–Counterion Interaction Induced by Weakly Associated Chiral Counterions. Journal of Physical Chemistry B, 2020, 124, 9958-9966.	1.2	7
17	Co-ion Effects in the Self-Assembly of Macroions: From Co-ions to Co-macroions and to the Unique Feature of Self-Recognition. Langmuir, 2020, 36, 10519-10527.	1.6	11
18	Synthesis, Assembly, and Sizing of Neutral, Lanthanide Substituted Molybdenum Blue Wheels {Mo ₉₀ Ln ₁₀ }. Journal of the American Chemical Society, 2020, 142, 17508-17514.	6.6	39

#	Article	IF	CITATIONS
19	Enhanced Macroanion Recognition of Superchaotropic Keggin Clusters Achieved by Synergy of Anion–π and Anion–Cation Interactions. Chemistry - A European Journal, 2020, 26, 16802-16810.	1.7	10
20	A large molecular cluster with high proton release capacity. Chemical Communications, 2020, 56, 12849-12852.	2.2	9
21	Supramolecular Nanostructures Constructed from Cluster-based Hybrid Macromolecules. Giant, 2020, 2, 100013.	2.5	33
22	Unraveling the Effects of Cobalt on Crystal Growth and Solution Behavior of Nb6P2W12-based Dimeric Clusters. Inorganic Chemistry, 2020, 59, 6747-6754.	1.9	9
23	Oligo(<scp>l</scp> -glutamic acids) in Calcium Phosphate Precipitation: Mechanism of Delayed Phase Transformation. Journal of Physical Chemistry B, 2020, 124, 6288-6298.	1.2	7
24	Magnifying the Structural Components of Biomembranes: A Prototype for the Study of the Selfâ€Assembly of Giant Lipids. Angewandte Chemie, 2020, 132, 5264-5272.	1.6	6
25	Magnifying the Structural Components of Biomembranes: A Prototype for the Study of the Selfâ€Assembly of Giant Lipids. Angewandte Chemie - International Edition, 2020, 59, 5226-5234.	7.2	30
26	Continuous Curvature Change into Controllable and Responsive Onion-like Vesicles by Rigid Sphere–Rod Amphiphiles. ACS Nano, 2020, 14, 1811-1822.	7.3	20
27	Unraveling Chiral Selection in the Self-assembly of Chiral Fullerene Macroions: Effects of Small Chiral Components Including Counterions, Co-ions, or Neutral Molecules. Langmuir, 2020, 36, 4702-4710.	1.6	5
28	Morphology and Flow Behavior of Cellulose Nanofibers Dispersed in Glycols. Macromolecules, 2019, 52, 5499-5509.	2.2	18
29	Distinctive Trend of Metal Binding Affinity via Hydration Shell Breakage in Nanoconfined Cavity. Journal of Physical Chemistry C, 2019, 123, 14825-14833.	1.5	15
30	Unconventional Complex Coacervation between Neutral Polymer and Inorganic Polyoxometalate in Aqueous Solution via Direct Water Mediation. Macromolecules, 2019, 52, 8275-8284.	2.2	18
31	Isotope and Hydrogenâ€Bond Effects on the Selfâ€Assembly of Macroions in Dilute Solution. Chemistry - A European Journal, 2019, 25, 16288-16293.	1.7	7
32	Inhomogeneous Distribution of Cationic Surfactants around Anionic Molecular Clusters. Chemistry - A European Journal, 2019, 25, 15741-15745.	1.7	2
33	Adjusting Emission Wavelength by Tuning the Intermolecular Distance in Charge-Regulated Supramolecular Assemblies. Journal of Physical Chemistry C, 2019, 123, 23280-23286.	1.5	9
34	Sequence isomeric giant surfactants with distinct self-assembly behaviors in solution. Chemical Communications, 2019, 55, 636-639.	2,2	18
35	Competition and Cooperation among Different Attractive Forces in Solutions of Inorganic–Organic Hybrids Containing Macroionic Clusters. Langmuir, 2019, 35, 7603-7616.	1.6	12
36	Tuning the Intercage Distance in Chargeâ€Regulated Blackberryâ€Type Assemblies through Host–Guest Chemistry. Chemistry - A European Journal, 2019, 25, 5803-5808.	1.7	11

#	Article	IF	Citations
37	Comment on "Photochemical reduction of carbon dioxide coupled with water oxidation using various soft-oxometalate (SOM) based catalytic systems―(J. Mater. Chem. A, 2016, 4, 8875–8887). Journal of Materials Chemistry A, 2019, 7, 23234-23240.	5.2	0
38	Conformational change due to intramolecular hydrophobic interaction leads to large blue-shifted emission from single molecular cage solutions. Chemical Communications, 2019, 55, 330-333.	2.2	14
39	Selfâ€Assembly of Polyoxometalate–Peptide Hybrids in Solution: Elucidating the Contributions of Multiple Possible Driving Forces. European Journal of Inorganic Chemistry, 2019, 2019, 380-386.	1.0	22
40	Effect of Cation–̀ Interaction on Macroionic Selfâ€Assembly. Angewandte Chemie, 2018, 130, 4131-4136.	1.6	13
41	Role of Protein Charge Density on Hepatitis B Virus Capsid Formation. ACS Omega, 2018, 3, 4384-4391.	1.6	7
42	Expanding the Schulze–Hardy Rule and the Hofmeister Series to Nanometerâ€6caled Hydrophilic Macroions. Chemistry - A European Journal, 2018, 24, 5479-5483.	1.7	32
43	Effect of Cation–̀ Interaction on Macroionic Selfâ€Assembly. Angewandte Chemie - International Edition, 2018, 57, 4067-4072.	7.2	37
44	Tuning of Polyoxopalladate Macroanionic Hydration Shell via Countercation Interaction. Chemistry - A European Journal, 2018, 24, 3052-3057.	1.7	29
45	Simple and efficient polyoxomolybdate-mediated synthesis of novel graphene and metal nanohybrids for versatile applications. Journal of Colloid and Interface Science, 2018, 514, 507-516.	5.0	14
46	Investigation of polybenzoxazine gelation using laser light scattering. Journal of Applied Polymer Science, 2018, 135, 45709.	1.3	6
47	Rational Design of Organically Functionalized Polyoxopalladates and Their Supramolecular Properties. Chemistry - A European Journal, 2018, 24, 2466-2473.	1.7	26
48	Improved peroxidase-mimic property: Sustainable, high-efficiency interfacial catalysis with H2O2 on the surface of vesicles of hexavanadate-organic hybrid surfactants. Nano Research, 2018, 11, 1313-1321.	5.8	25
49	Unique Symmetry-Breaking Phenomenon during the Self-assembly of Macroions Elucidated by Simulation. Scientific Reports, 2018, 8, 13076.	1.6	14
50	A dimorphism shift of hepatitis B virus capsids in response to ionic conditions. Nanoscale, 2018, 10, 16984-16989.	2.8	6
51	Hydrogen bonding directed co-assembly of polyoxometalates and polymers to core–shell nanoparticles. Materials Chemistry Frontiers, 2018, 2, 2070-2075.	3.2	16
52	Supramolecular arrays by the self-assembly of terpyridine-based monomers with transition metal ions. Dalton Transactions, 2018, 47, 7528-7533.	1.6	11
53	Hierarchical self-assembly of zwitterionic dendrimer–anionic surfactant complexes into multiple stimuli-responsive dynamic nanotubes. Nanoscale, 2018, 10, 1411-1419.	2.8	9
54	Title: Periodic Mesoporous Hexagonal Boron Nitride at High Pressure: A Route to Cubic Boron Nitride Nanocrystals and Mesoporous Cubic Boron Nitride. ChemistrySelect, 2017, 2, 740-744.	0.7	4

#	Article	IF	CITATIONS
55	Cation Translocation around Single Polyoxometalate–Organic Hybrid Cluster Regulated by Electrostatic and Cation–π Interactions. Angewandte Chemie, 2017, 129, 3342-3346.	1.6	8
56	A fundamental study of oil release mechanism in soap and non-soap thickened greases. Tribology International, 2017, 110, 333-340.	3.0	31
57	Cation Translocation around Single Polyoxometalate–Organic Hybrid Cluster Regulated by Electrostatic and Cation–π Interactions. Angewandte Chemie - International Edition, 2017, 56, 3294-3298.	7.2	18
58	Partitioning of Small Molecules in Hydrogen-Bonding Complex Coacervates of Poly(acrylic acid) and Poly(ethylene glycol) or Pluronic Block Copolymer. Macromolecules, 2017, 50, 3818-3830.	2.2	37
59	A Spontaneous Structural Transition of {U ₂₄ Pp ₁₂ } Clusters Triggered by Alkali Counterion Replacement in Dilute Solution. Chemistry - A European Journal, 2017, 23, 7915-7919.	1.7	5
60	Polyoxometalate-based gelating networks for entrapment and catalytic decontamination. Chemical Communications, 2017, 53, 11480-11483.	2.2	56
61	Mannoseâ€based graft polyesters with tunable binding affinity to concanavalin A. Journal of Polymer Science Part A, 2017, 55, 3908-3917.	2.5	9
62	Autonomous model protocell division driven by molecular replication. Nature Communications, 2017, 8, 237.	5.8	48
63	Strong Co-Ion Effect via Cationâ^Ï€ Interaction on the Self-Assembly of Metal–Organic Cationic Macrocycles. Journal of the American Chemical Society, 2017, 139, 12020-12026.	6.6	39
64	Tuning the Surface Hydrophobicity of Keplerate {Mo72Fe30} Porous Molecular Capsules by Surface Ligand-Replacement Process. Journal of Cluster Science, 2017, 28, 745-755.	1.7	3
65	Rationally Controlling the Self-Assembly Behavior of Triarmed POSS–Organic Hybrid Macromolecules: From Giant Surfactants to Macroions. Macromolecules, 2017, 50, 5042-5050.	2.2	34
66	Rationally Controlled Self-Assembly Behavior of Inorganic-Organic Hybrids in Solution. ACS Symposium Series, 2017, , 151-187.	0.5	0
67	New Perspectives for Old Clusters: Anderson–Evans Anions as Building Blocks of Large Polyoxometalate Frameworks in a Series of Heterometallic 3 d–4 f Species. Chemistry - A European Journal, 2016, 22, 4616-4625.	1.7	30
68	Light―and Solventâ€Controlled Selfâ€Assembly Behavior of Spiropyran–Polyoxometalate–Alkyl Hybrid Molecules. Chemistry - A European Journal, 2016, 22, 11756-11762.	1.7	31
69	Elucidating the Origin of the Attractive Force among Hydrophilic Macroions. Scientific Reports, 2016, 6, 26595.	1.6	27
70	Effect of Directional Hydrogen Bonding on the Self-Assembly of Anisotropically-Shaped Macroions. ChemistrySelect, 2016, 1, 4345-4349.	0.7	12
71	Self-Assembly of Polyoxovanadate-Containing Fluorosurfactants. Langmuir, 2016, 32, 12856-12861.	1.6	11
72	Modification of the Solution Behavior of Pd ₁₂ L ₂₄ Metal–Organic Nanocages via PEGylation. Chemistry - A European Journal, 2016, 22, 17949-17952.	1.7	32

#	Article	IF	CITATIONS
73	Thermal Responsive Ion Selectivity of Uranyl Peroxide Nanocages: An Inorganic Mimic of K ⁺ Ion Channels. Angewandte Chemie, 2016, 128, 7001-7005.	1.6	16
74	Thermal Responsive Ion Selectivity of Uranyl Peroxide Nanocages: An Inorganic Mimic of K ⁺ Ion Channels. Angewandte Chemie - International Edition, 2016, 55, 6887-6891.	7.2	32
75	Manipulation of Self-Assembled Nanostructure Dimensions in Molecular Janus Particles. ACS Nano, 2016, 10, 6585-6596.	7.3	79
76	Rational controlled morphological transitions in the self-assembled multi-headed giant surfactants in solution. Chemical Communications, 2016, 52, 8687-8690.	2.2	34
77	Origin of Water-Induced Fluorescence Turn-On from a Schiff Base Compound: AIE or H-Bonding Promoted ESIPT?. Journal of Physical Chemistry B, 2016, 120, 766-772.	1.2	59
78	Solution behaviour of a polymer with polyoxometalate inorganic molecular clusters in its main chain. New Journal of Chemistry, 2016, 40, 910-913.	1.4	7
79	Selfâ€Recognition Between Two Almost Identical Macroions During Their Assembly: The Effects of pH and Temperature. Chemistry - A European Journal, 2015, 21, 13234-13239.	1.7	7
80	Selective Permeability of Uranyl Peroxide Nanocages to Different Alkali Ions: Influences from Surface Pores and Hydration Shells. Chemistry - A European Journal, 2015, 21, 18785-18790.	1.7	29
81	Exploring the Effect of Surface Functionality on the Selfâ€Assembly of Polyoxopalladate Macroions. Chemistry - A European Journal, 2015, 21, 9048-9052.	1.7	25
82	Spontaneous Selfâ€Assembly of γâ€Cyclodextrins in Dilute Solutions with Tunable Sizes and Thermodynamic Stability. Chemistry - A European Journal, 2015, 21, 9563-9568.	1.7	15
83	Supramolecular Assembly of Poly(propyleneimine) Dendrimers Driven By Simple Monovalent Counterions. Chemistry - A European Journal, 2015, 21, 18623-18630.	1.7	17
84	Frontispiece: Selfâ€Recognition Between Two Almost Identical Macroions During Their Assembly: The Effects of pH and Temperature. Chemistry - A European Journal, 2015, 21, .	1.7	0
85	Hedgehog-shaped {Mo368} cluster: unique electronic/structural properties, surfactant encapsulation and related self-assembly into vesicles and films. Soft Matter, 2015, 11, 2372-2378.	1.2	12
86	Charge-Regulated Spontaneous, Reversible Self-Assembly of the Carboxylic Acid-Functionalized Hydrophilic Fullerene Macroanions in Dilute Solution. Macromolecules, 2015, 48, 725-731.	2.2	29
87	Design of polystyrene latex particles covered with polyoxometalate clusters via multiple covalent bonding. Chemical Communications, 2015, 51, 6104-6107.	2.2	14
88	A Library of Thermoresponsive, Coacervate-Forming Biodegradable Polyesters. Macromolecules, 2015, 48, 3834-3842.	2.2	54
89	Crownâ€Shaped Tungstogermanates as Solventâ€Controlled Dual Systems in the Formation of Vesicleâ€Like Assemblies. Chemistry - A European Journal, 2015, 21, 7736-7745.	1.7	19
90	Experimental measurements of U60 nanocluster stability in aqueous solution. Geochimica Et Cosmochimica Acta, 2015, 156, 94-105.	1.6	19

#	Article	IF	CITATIONS
91	Self-assembly of triangular polyoxometalate–organic hybrid macroions in mixed solvents. Chemical Communications, 2015, 51, 8630-8633.	2.2	20
92	Chiral recognition and selection during the self-assembly process of protein-mimic macroanions. Nature Communications, 2015, 6, 6475.	5.8	66
93	Temperature- and salt-responsive polyoxometalate–poly(N-isopropylacrylamide) hybrid macromolecules in aqueous solution. Chemical Communications, 2015, 51, 15982-15985.	2.2	16
94	Supramolecular Assemblies of Polyoxometalateâ€Tethered Diblock Copolymers with Tunable Sizes in <i>N</i> â€Methylâ€2â€pyrrolidone/Toluene Mixed Solvents. European Journal of Inorganic Chemistry, 2014, 2014, 4589-4592.	1.0	9
95	Exploring the Symmetry, Structure, and Selfâ€Assembly Mechanism of a Gigantic Sevenâ€Fold Symmetric {Pd ₈₄ } Wheel. Angewandte Chemie, 2014, 126, 10196-10201.	1.6	16
96	Size tunable synthesis of solution processable diamond nanocrystals. Chemical Communications, 2014, 50, 11307-11310.	2.2	16
97	Exploring the Symmetry, Structure, and Selfâ€Assembly Mechanism of a Gigantic Sevenâ€Fold Symmetric {Pd ₈₄ } Wheel. Angewandte Chemie - International Edition, 2014, 53, 10032-10037.	7.2	53
98	Spontaneous Stepwise Selfâ€Assembly of a Polyoxometalate–Organic Hybrid into Catalytically Active Oneâ€Dimensional Anisotropic Structures. Chemistry - A European Journal, 2014, 20, 9589-9595.	1.7	67
99	Soft Matter Approaches for Enhancing the Catalytic Capabilities of Polyoxometalate Clusters. Journal of Cluster Science, 2014, 25, 695-710.	1.7	15
100	Self-Assembly of Subnanometer-Scaled Polyhedral Oligomeric Silsesquioxane (POSS) Macroions in Dilute Solution. European Journal of Inorganic Chemistry, 2014, 2014, 4593-4599.	1.0	19
101	Evolution of Actinyl Peroxide Clusters U ₂₈ in Dilute Electrolyte Solution: Exploring the Transition from Simple Ions to Macroionic Assemblies. Chemistry - A European Journal, 2014, 20, 1683-1690.	1.7	18
102	Exploring the Programmable Assembly of a Polyoxometalateâ€"Organic Hybrid via Metal Ion Coordination. Journal of the American Chemical Society, 2013, 135, 13425-13432.	6.6	78
103	{Mo ₂₄ Fe ₁₂ } Macrocycles: Anion Templation with Large Polyoxometalate Guests. Angewandte Chemie - International Edition, 2013, 52, 10500-10504.	7.2	54
104	Bottom-Up Construction of POM-Based Macrostructures: Coordination Assembled Paddle-Wheel Macroclusters and Their Vesicle-like Supramolecular Aggregation in Solution. Journal of the American Chemical Society, 2013, 135, 17155-17160.	6.6	71
105	The self-assembly of a macroion with anisotropic surface charge density distribution. Chemical Communications, 2013, 49, 609-611.	2.2	18
106	Determination of the Effective Charge Density of pH-Responsive Keplerate Polyoxometalate Clusters by Means of Agarose Gel Electrophoresis. European Journal of Inorganic Chemistry, 2013, 2013, 1854-1858.	1.0	5
107	Self-Recognition of Structurally Identical, Rod-Shaped Macroions with Different Central Metal Atoms during Their Assembly Process. Journal of the American Chemical Society, 2013, 135, 4529-4536.	6.6	54
108	WHEN GIANTS MEET DWARVES IN THE SAME POND â€" UNIQUE SOLUTION PHYSICAL CHEMISTRY OPPORTUNITIES OFFERED BY POLYOXOMETALATE MACROIONS. World Scientific Series in Nanoscience and Nanotechnology, 2013, , 49-99.	0.1	1

#	Article	IF	Citations
109	The Best of Polyoxometalates. European Journal of Inorganic Chemistry, 2013, 2013, 1559-1560.	1.0	15
110	Supramolecular architectures assembled from amphiphilic hybrid polyoxometalates. Dalton Transactions, 2012, 41, 2853.	1.6	56
111	Polyoxometalate–Organic Hybrid Molecules as Amphiphilic Emulsion Catalysts for Deep Desulfurization. Chemistry - A European Journal, 2012, 18, 9174-9178.	1.7	98
112	Chemical Adaptability: The Integration of Different Kinds of Matter into Giant Molecular Metal Oxides. Chemistry - A European Journal, 2012, 18, 16310-16318.	1.7	18
113	Fusarium wilt of <i>Coleus forskohlii </i> caused by <i> Fusarium oxysporum </i> in China. Canadian Journal of Plant Pathology, 2012, 34, 310-314.	0.8	6
114	Poly(ionic liquid) and macrocyclic polyoxometalate ionic self-assemblies: new water-insoluble and visible light photosensitive catalysts. Journal of Materials Chemistry, 2012, 22, 319-323.	6.7	44
115	Solution behaviors and self-assembly of polyoxometalates as models of macroions and amphiphilic polyoxometalate–organic hybrids as novel surfactants. Chemical Society Reviews, 2012, 41, 7368.	18.7	334
116	Supramolecular Assembly of Conjugated Polymers Containing Polyoxometalate Terminal Side Chains in Polar and Nonpolar Solvents. Chemistry - A European Journal, 2012, 18, 6754-6758.	1.7	25
117	Controllable Selfâ€Assembly of Organic–Inorganic Amphiphiles Containing Dawson Polyoxometalate Clusters. Chemistry - A European Journal, 2012, 18, 8157-8162.	1.7	89
118	Self-Recognition Among Different Polyprotic Macroions During Assembly Processes in Dilute Solution. Science, 2011, 331, 1590-1592.	6.0	109
119	Amphiphilic Properties of Dumbbell-Shaped Inorganic–Organic–Inorganic Molecular Hybrid Materials in Solution and at an Interface. Langmuir, 2011, 27, 9193-9202.	1.6	44
120	Inorganic–Organic Hybrid Vesicles with Counterion- and pH-Controlled Fluorescent Properties. Journal of the American Chemical Society, 2011, 133, 14010-14016.	6.6	178
121	Counterion Interaction and Association in Metalâ€Oxide Cluster Macroanionic Solutions and the Consequent Selfâ€Assembly. Israel Journal of Chemistry, 2011, 51, 191-204.	1.0	35
122	A Doubleâ€∓ailed Fluorescent Surfactant with a Hexavanadate Cluster as the Head Group. Angewandte Chemie - International Edition, 2011, 50, 2521-2525.	7.2	167
123	Viralâ€Capsidâ€Type Vesicleâ€Like Structures Assembled from M ₁₂ L ₂₄ Metal–Organic Hybrid Nanocages. Angewandte Chemie - International Edition, 2011, 50, 5182-5187.	7.2	68
124	Buildup of Amphiphilic Molecular Bola from Organic–Inorganic Hybrid Polyoxometalates and Their Vesicle‣ike Supramolecular Assembly. Chemistry - A European Journal, 2011, 17, 12006-12009.	1.7	14
125	Effect of SS-toxin, a metabolite of Stemphylium solani, on H+-ATPase activity and standard redox system in plasma membranes from seedlings leaves of garlic (Allium sativum). European Journal of Plant Pathology, 2010, 127, 419-425.	0.8	3
126	Unique Supramolecular Assembly of Wheel-Shaped Nanoscale Polyanions with a Hydrophobic Core. European Journal of Inorganic Chemistry, 2010, 2010, 3195-3200.	1.0	16

#	Article	IF	Citations
127	Reverseâ€Vesicle Formation of Organic–Inorganic Polyoxometalateâ€Containing Hybrid Surfactants with Tunable Sizes. Chemistry - A European Journal, 2010, 16, 11320-11324.	1.7	65
128	Porous Capsules {(M)M ₅ } ₁₂ Fe ^{III} ₃₀ (M=Mo ^{VI} , W ^{VI}): Sphere Surface Supramolecular Chemistry with 20 Ammonium Ions, Related Solution Properties, and Tuning of Magnetic Exchange Interactions. Angewandte Chemie - International Edition, 2010, 49, 514-519.	7.2	77
129	Stability of Keplerate polyoxometalate macroanionic assemblies in salt-containing aqueous solutions. Inorganica Chimica Acta, 2010, 363, 4230-4233.	1.2	6
130	Selective Monovalent Cation Association and Exchange around Keplerate Polyoxometalate Macroanions in Dilute Aqueous Solutions. Langmuir, 2010, 26, 9449-9456.	1.6	66
131	PdO@Polyoxometalate Nanostructures as Green Electrocatalysts: Illustrative Example of Hydrogen Production. Materials, 2010, 3, 741-754.	1.3	31
132	Hydrophilic Macroionic Solutions: What Happens When Soluble Ions Reach the Size of Nanometer Scale?. Langmuir, 2010, 26, 9202-9213.	1.6	119
133	Unprecedented and Differently Applicable Pentagonal Units in a Dynamic Library: A Keplerate of the Type {(W)W ₅ } ₁₂ {Mo ₂ } ₃₀ . Angewandte Chemie - International Edition, 2009, 48, 149-153.	7.2	115
134	Counterion Distribution around Hydrophilic Molecular Macroanions: The Source of the Attractive Force in Selfâ€Assembly. Angewandte Chemie - International Edition, 2009, 48, 6538-6542.	7.2	70
135	Synthesis of Modular "Inorganic–Organic–Inorganic―Polyoxometalates and Their Assembly into Vesicles. Angewandte Chemie - International Edition, 2009, 48, 8309-8313.	7.2	162
136	Lag Periods During the Self-Assembly of {Mo ₇₂ Fe ₃₀ } Macroions: Connection to the Virus Capsid Formation Process. Journal of the American Chemical Society, 2009, 131, 15152-15159.	6.6	73
137	Accurately Tuning the Charge on Giant Polyoxometalate Type Keplerates through Stoichiometric Interaction with Cationic Surfactants. Langmuir, 2009, 25, 7328-7334.	1.6	29
138	Synthesis of Stishovite Nanocrystals from Periodic Mesoporous Silica. Journal of the American Chemical Society, 2009, 131, 2764-2765.	6.6	22
139	Synthesis of remarkably stabilized metal nanostructures using polyoxometalates. Journal of Materials Chemistry, 2009, 19, 19-33.	6.7	109
140	Molybdenum-oxide based unique polyprotic nanoacids showing different deprotonations and related assembly processes in solution. Dalton Transactions, 2009, , 5094.	1.6	42
141	Self-Assembly of Yttrium-Containing Lacunary Polyoxotungstate Macroanions in Solution with Controllable Supramolecular Structure Size by pH or Solvent Content. Langmuir, 2008, 24, 9308-9313.	1.6	21
142	Self-Assembly of Organicâ^Inorganic Hybrid Amphiphilic Surfactants with Large Polyoxometalates as Polar Head Groups. Journal of the American Chemical Society, 2008, 130, 14408-14409.	6.6	291
143	Self-Assembly of Polyoxometalate Macroanion-Capped PdO Nanoparticles in Aqueous Solution. Langmuir, 2008, 24, 5277-5283.	1.6	43
144	Spontaneous Self-Assembly of Metalâ^'Organic Cationic Nanocages to Form Monodisperse Hollow Vesicles in Dilute Solutions. Journal of the American Chemical Society, 2008, 130, 4226-4227.	6.6	91

#	Article	IF	Citations
145	Membranes Based on "Keplerate―Type Polyoxometalates:  Slow, Passive Cation Transportation and Creation of Water Microenvironment. Journal of the American Chemical Society, 2008, 130, 1548-1549.	6.6	75
146	Charge Regulation as a Stabilization Mechanism for Shell-Like Assemblies of Polyoxometalates. Physical Review Letters, 2007, 99, 066104.	2.9	110
147	Structure of the <i>Haemophilus influenzae</i> HMW1B Translocator Protein: Evidence for a Twin Pore. Journal of Bacteriology, 2007, 189, 7497-7502.	1.0	12
148	Hydrophilic Inorganic Macro-Ions in Solution: Unprecedented Self-Assembly Emerging from Historical "Blue Waters". Journal of Chemical Education, 2007, 84, 526.	1.1	37
149	A Complete Macroionâ^'"Blackberry―Assemblyâ^'Macroion Transition with Continuously Adjustable Assembly Sizes in {Mo132} Water/Acetone Systems. Journal of the American Chemical Society, 2007, 129, 6453-6460.	6.6	140
150	Self-Patterning of Hydrophobic Materials into Highly Ordered Honeycomb Nanostructures at the Air/Water Interface. Angewandte Chemie - International Edition, 2007, 46, 3342-3345.	7.2	100
151	Nanometer-Sized Molybdenum–Iron Oxide Capsule-Surface Modifications: External and Internal. Small, 2007, 3, 986-992.	5.2	10
152	Wheel-Shaped Polyoxotungstate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25-Macroanions Form Supramolecular "Blackberry―Structure in Aqueous Solution. Journal of the American Chemical Society, 2006, 128, 10103-10110.	6.6	144
153	"Second Organized Structures―of Nanoscale Inorganic Polyoxomolybdate Compounds. Acta Physico-chimica Sinica, 2006, 22, 1300-1304.	0.6	1
154	Deprotonations and Charges of Well-Defined {Mo72Fe30} Nanoacids Simply Stepwise Tuned by pH Allow Control/Variation of Related Self-Assembly Processes. Journal of the American Chemical Society, 2006, 128, 15914-15920.	6.6	154
155	Counter-Ion Association Effect in Dilute Giant Polyoxometalate [AsIII 12CeIII 16(H2O)36W148O524]76â^'({W148}) and [Mo132O372(CH3COO)30 (H2O)72]42â^' ({Mo132}) Macroanionic Solutions. Journal of Cluster Science, 2006, 17, 427-443.	1.7	29
156	Hybrid Inorganic/Organic Quasi-Single Crystals of Wheel-Shaped \$\${hbox{Mo}_{154}}\$\$ Macro-anions and Cationic-surfactants. Journal of Cluster Science, 2006, 17, 467-478.	1.7	5
157	The ionic effect on supramolecular associations in polyoxomolybdate solution. Journal of Molecular Liquids, 2005, 118, 27-29.	2.3	12
158	An Onion Phase in Salt-Free Zero-Charged Catanionic Surfactant Solutions. Angewandte Chemie - International Edition, 2005, 44, 4018-4021.	7.2	100
159	Thermodynamic Properties of the Unique Self-Assembly of {Mo72Fe30} Inorganic Macro-lons in Salt-Free and Salt-Containing Aqueous Solutions. Langmuir, 2005, 21, 2713-2720.	1.6	76
160	Mediatorâ^Template Assembly of Nanoparticles. Journal of the American Chemical Society, 2005, 127, 1519-1529.	6.6	165
161	Laser Light Scattering Observations of Liquid–Liquid Phase Separation in a Polymer-Induced Liquid-Precursor (PILP) Mineralization Process. Materials Research Society Symposia Proceedings, 2005, 873, 1.	0.1	5
162	Strong Attraction among the Fully Hydrophilic {Mo72Fe30} Macroanions. Journal of the American Chemical Society, 2005, 127, 6942-6943.	6.6	86

#	Article	IF	CITATIONS
163	Structural Stability of Giant Polyoxomolybdate Molecules as Probed by EXAFS. Physica Scripta, 2005, , 721.	1.2	15
164	Regular and irregular micelles formed by A LEL triblock copolymer in aqueous solution. Polymer, 2004, 45, 7989-7993.	1.8	15
165	Self-Assembly in Aqueous Solution of Wheel-Shaped Mo154 Oxide Clusters into Vesicles ChemInform, 2004, 35, no.	0.1	1
166	Automatic and Subsequent Dissolution and Precipitation Process in Inorganic Macroionic Solutions. Journal of the American Chemical Society, 2004, 126, 16690-16691.	6.6	45
167	The Outer Membrane Usher Forms a Twin-pore Secretion Complex. Journal of Molecular Biology, 2004, 344, 1397-1407.	2.0	67
168	Surfactant-Induced Trans-Interface Transportation and Complex Formation of Giant Polyoxomolybdate-Based Clusters. Journal of Cluster Science, 2003, 14, 215-226.	1.7	32
169	An Unusually Slow Self-Assembly of Inorganic Ions in Dilute Aqueous Solution ChemInform, 2003, 34, no.	0.1	0
170	Nanofabrication in polymer matrices. Progress in Polymer Science, 2003, 28, 5-26.	11.8	189
171	Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles. Nature, 2003, 426, 59-62.	13.7	481
172	An Unusually Slow Self-Assembly of Inorganic Ions in Dilute Aqueous Solution. Journal of the American Chemical Society, 2003, 125, 312-313.	6.6	145
173	Size-Controlled Assembly of Gold Nanoparticles Induced by a Tridentate Thioether Ligand. Journal of the American Chemical Society, 2003, 125, 9906-9907.	6.6	85
174	Coupling of optical characterization with particle and network synthesis for biomedical applications. Journal of Biomedical Optics, 2002, 7, 498.	1.4	4
175	Salt-Induced Polymer Gelation and Formation of Nanocrystals in a Polymerâ^'Salt System. Langmuir, 2002, 18, 10402-10406.	1.6	10
176	Supramolecular Structures of Polyoxomolybdate-Based Giant Molecules in Aqueous Solution. Journal of the American Chemical Society, 2002, 124, 10942-10943.	6.6	117
177	DNA Capillary Electrophoresis Using Block Copolymer as a New Separation Medium. , 2001, 162, 225-238.		5
178	Polymer-Assisted Formation of Giant Polyoxomolybdate Structures. Journal of the American Chemical Society, 2001, 123, 10966-10972.	6.6	30
179	HIV-1 Capsid Protein Forms Spherical (Immature-Like) and Tubular (Mature-Like) Particles in Vitro: Structure Switching by pH-induced Conformational Changes. Biophysical Journal, 2001, 81, 586-594.	0.2	82
180	Spatial open-network formed by mixed triblock copolymers as a new medium for double-stranded DNA separation by capillary electrophoresis. Electrophoresis, 2001, 22, 449-458.	1.3	20

#	Article	lF	Citations
181	Separation of double-stranded DNA fragments by capillary electrophoresis in interpenetrating networks of polyacrylamide and polyvinylpyrrolidone. Electrophoresis, 2001, 22, 3688-3698.	1.3	35
182	Mixed triblock copolymers used as DNA separation medium in capillary electrophoresis. Journal of Chromatography A, 2001, 909, 271-278.	1.8	15
183	SAXS study on complexes formed by anionic poly(sodium methacrylate-co-N-isopropylacrylamide) gels with cationic surfactants. Polymers for Advanced Technologies, 2000, 11, 235-241.	1.6	10
184	Formation of homogeneous gel-like phases by mixed triblock copolymer micelles in aqueous solution: FCC to BCC phase transition. Journal of Applied Crystallography, 2000, 33, 727-730.	1.9	46
185	Characterization of Nanoparticles by Scattering Techniques. Journal of Nanoparticle Research, 2000, 2, 29-41.	0.8	130
186	Use of Block Copolymer Micelles on Formation of Hollow MoO3Nanospheresâ€. Langmuir, 2000, 16, 9015-9022.	1.6	110
187	Atomic Force Microscopy Study of E99P69E99Triblock Copolymer Chains on Silicon Surface. Langmuir, 2000, 16, 656-661.	1.6	28
188	Salt-Induced Microphase Separation and Crystallization in Saltâ^Polymer Complex Systems. Langmuir, 2000, 16, 7533-7537.	1.6	6
189	Amphiphilic Polyoxyalkylene Triblock Copolymers: Self-Assembly, Phase Behaviors, and New Applications. ACS Symposium Series, 2000, , 2-20.	0.5	9
190	Laser Light Scattering Study of Microemulsion-like Polymerization Processes with Block Copolymers as Dispersants. Macromolecules, 1999, 32, 6031-6042.	2.2	33
191	Self-Assembly of Mixed Amphiphilic Triblock Copolymers in Aqueous Solution. Langmuir, 1999, 15, 3109-3117.	1.6	57
192	Viscosity-adjustable block copolymer for DNA separation by capillary electrophoresis. Electrophoresis, 1998, 19, 231-241.	1.3	107
193	A new separation medium for DNA capillary electrophoresis: self-assembly behavior of Pluronic polyol E99P69E99 in 1X TBE buffer. Journal of Non-Crystalline Solids, 1998, 235-237, 605-611.	1.5	19
194	Dominant Factors on the Micellization of BnEmBn-Type Triblock Copolymers in Aqueous Solution. Journal of Physical Chemistry B, 1998, 102, 2875-2882.	1.2	63
195	Formation of a Saltâ^'Polymer Complex in L64/Water/CdCl2 Systems. Langmuir, 1998, 14, 7539-7542.	1.6	7
196	Laser Light Scattering Study of a Rigid-Rod Polyelectrolyte. Macromolecules, 1998, 31, 6119-6128.	2.2	36
197	Structures and properties of block copolymers in solution. Macromolecular Symposia, 1997, 118, 221-227.	0.4	20
198	Effects of Block Lengths on the Association Numbers and Micellar Sizes of BnEmBnType Triblock Copolymer Micelles in Aqueous Solution. Macromolecules, 1997, 30, 7624-7626.	2.2	14

TIANBO LIU

#	Article	IF	CITATIONS
199	Cloud-Point Temperatures of BnEmBnand PnEmPnType Triblock Copolymers in Aqueous Solution. Journal of Physical Chemistry B, 1997, 101, 8074-8078.	1.2	39
200	Self-Assembly of Poly(oxybutylene)â^'Poly(oxyethylene)â^'Poly(oxybutylene) (B6E46B6) Triblock Copolymer in Aqueous Solution. Journal of Physical Chemistry B, 1997, 101, 8808-8815.	1.2	70
201	Characterization of the PEOâ^'PPOâ^'PEO Triblock Copolymer and Its Application as a Separation Medium in Capillary Electrophoresis. Macromolecules, 1997, 30, 4574-4583.	2.2	201